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Visualization Techniques for 
Unsteady Flows: An Overview1 

The purpose of this article is to review some of the novel flow visualization tech
niques that are particularly suited for studying unsteady flows. While many of these 
techniques are equally conducive for steady flow fields, the present paper will em
phasize applications to time-dependent flows. Possible pitfalls in interpreting the 
visualization results are elaborated. The flow visualization methods presented in
clude those that make use of scattered light from small particles or other foreign ad
ditives as well as those that make use of changes in the index of refraction. 

1 Introduction 

The understanding of unsteady flow phenomena is of great 
practical interest in the design of turbomachinery, fixed- or 
rotating-wing aircraft, missiles, ship propellers, and many 
other products. Because of the complexity of such flows, they 
represent a domain of fluid mechanics that is currently beyond 
the reach of definitive theoretical or numerical analysis, and 
progress to-date has depended crucially upon experiments. 
Flow visualization techniques offer a useful tool to establish 
an overall picture of the unsteady flow field and to delineate 
broadly its important salient features before embarking on 
more detailed quantitative measurements using, for example, 
fast-response velocity or pressure probes. In some instances, it 
may be impossible to extract useful results from probe 
measurements alone, and flow visualization can then offer an 
attractive alternative. 

To quote Van Dyke (1982), "We who work in fluid 
mechanics are fortunate, as are our colleagues in a few other 
fields such as optics, that our subject is easily visualized." 
Some flows are, of course, more readily visualized than 
others. The time-dependent pressure field associated with an 
unsteady flow often makes it difficult to use classical dye or 
smoke injection visualization methods. Not only is it difficult 
to release the tracer uniformly into the flow due to the fluc
tuating pressure field, but also, as shown below, the observed 
pattern in an unsteady flow represents streaklines rather than 
pathlines or mean streamlines. Streaklines are not as well-
adapted to the formation of mathematical models, and as a 
result the visual images are related, subjectively, to the 
physical modules under consideration (Kline, 1978). 

Visualization of unsteady flows can be particularly confus
ing. While in a steady flow a streamline, a streakline, or a 
pathline all coincide, this is not the case for a time-dependent 
flow. To recall briefly, a pathline (or particle path) is the curve 
that a particular fluid particle traverses in the flow field as a 
function of time; streamlines are the curves tangential to the 

'Based on an invited plenary paper presented at the Fourth International 
Symposium on Flow Visualization, 26-29 August 1986, ENSTA, Paris, France 
(Gad-el-Hak, 1987a). 

Contributed by the Fluids Engineering Division for publication in the JOUR
NAL OF FLUIDS ENGINEERS. Manuscript received by the Fluids Engineering Divi
sion December 29, 1986. 

instantaneous direction of the flow velocity at all points in the 
flow field; and a streakline is the instantaneous locus of all 
fluid particles which have passed through a particular fixed 
point within the flow. Typically, a tracer is introduced into the 
flow field at a point or a line and, hence, the observed patterns 
are streaklines. At any instant, the visualization provides the 
time history of the tracer but not the local event, even in a 
frame frozen with the observed phenomenon. 

Hama (1962) provided a convincing example of the possible 
pitfalls in interpreting flow visualization results in an unsteady 
flow field. He numerically generated the streamlines, 
pathlines, and streaklmes for a shear layer flow perturbed by a 
traveling sinusoidal wave of neutral stability. The resulting 
pattern of streamlines changed dramatically when these lines 
were recorded with a moving "camera" or with a camera at 
rest in the laboratory frame. Moreover, when "dye" was in
jected near the critical layer (where the flow speed equals the 
wave speed), the streaklines had an appearance of amplifica
tion and rolling as if to indicate that the flow had developed 
into discrete vortices. In fact, there was no amplification of 
the neutrally stable wave and no discrete vortices existed 
anywhere in the flow. Hama asserted that the rolling-up of a 
streakline in an unsteady flow cannot constitute a positive 
identification of the presence of a discrete vortex. Away from 
the critical layer, the streaklines appeared to show an alter
nating amplification and damping with the wrong wavelength 
and wave velocity. Hama clearly showed that information due 
to pathlines as obtained by tracing marked particles are equal
ly improper in regard to the wave motion. Apparent u and v 
fluctuations as determined by tracing a particle had no direct 
bearing on the velocity fluctuations at a point. 

In turbulent flows, an additional problem arises due to the 
large Schmidt numbers involved with typical tracers intro
duced into the flow, such as dye or smoke. The marker 
boundary differs from vorticity boundary due to the rapid dif-
fusivity of the tracer introduced upstream of an observation 
station. This combines with the time history effects to blur out 
the local events and to make it difficult to differentiate be
tween coherent motion and incoherent turbulence in the flow 
field (Hussain, 1986). 

Another difficulty associated with unsteady flows is the ad
ditional time scale imposed by the unsteadiness of the motion. 
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In any laboratory study, whether visualization techniques or 
fast-response probes are used, the accurate simulation of field 
conditions requires that the values of a number of dimen
sionless parameters attained in the field be matched in the 
laboratory. Those dimensionless parameters must express the 
geometric, kinematic, and dynamic similarities of the 
laboratory modeling with the field. It is generally not difficult' 
to scale down (or up) all geometric objects and all velocities 

. from the field case to the laboratory case, thus satisfying both 
geometric and kinematic similarities. Dynamic similarity 
means matching the ratios of a number of forces, such as 
buoyancy, inertia, viscous, and surface tension. Typical 
dimensionless ratios of these forces are the Reynolds number, 
Mach number, Froude (or Richardson) number, Rossby 
number, etc. Some of these numbers can be matched in most 
laboratory facilities, while others are more difficult to scale 
proportionally from the field to the laboratory. For example, 
in simulating the wake of an underwater vehicle moving in the 
ocean, the Froude number can be matched in a typical low-
speed towing tank although the field Reynolds number is too 
high to match. However, for unbounded turbulent flows, it is 
often argued that, if the Reynolds number is high enough, 
then the large-scale features of the flow will be independent of 
the Reynolds number (Townsend, 1976). This conjecture must 
be supported by field or laboratory data for the particular 
problem under consideration. The unsteadiness of the flow 
field imposes an additional time scale that must be considered 
when attempting a laboratory simulation. In fact, unsteady ef
fects often dominate other effects such as viscous, etc. In such 
cases, a nondimensional frequency would be a more important 
governing parameter than the Reynolds number. 

The present article reviews some of the novel flow visualiza
tion techniques that are particularly suited for studying time-
dependent flows. Most of these methods can also be used for 
steady flow fields, but the present paper will emphasize 
unsteady flow applications. The visualization methods re
viewed here are classified into six groups. Section 2 discusses 
visualization techniques requiring the addition of small par
ticles. Sections 3 and 4 list some of the visualization techniques 
that use dye and smoke, respectively. In Section 5, visualiza
tion methods that make use of index of refraction changes are 
reviewed, and in Section 6 chemical techniques are discussed. 
Finally, some flows that can be "naturally" visualized are 
described in Section 7. 

2 Scattered Light F rom Particles 

An important subdivision of flow visualization techniques 
are those that make use of light scattered by small particles. 
When foreign particles are added to a flowing fluid, the main 
concern is whether or not the motion of the particles closely 
approximates that of the fluid. In general, a tracer particle in
troduced into the flow deviates in direction and magnitude 
from the fluid velocity. This concern is, of course, more acute 
when the flow field is rapidly changing with time. The concen
tration of the particles and their size must also be so small that 
the fluid flow is not changed by the presence of the particles. 
Intuitively, the particle response to fluid velocity changes is 
faster for smaller particle densities and diameters. As a general 
rule of thumb, tracer particles should be at least one order of 
magnitude smaller than the fine structure of the flow under 
study. In this case, the difference between particle and fluid 
velocities can virtually be neglected and very reasonable ex
perimental results can be obtained. More rigorous analytical 
treatments of the motion of a single spherical particle in a 
nonuniform viscous flow are based on the Bassett-Boussinesq-
Oseen equation and can be found in the books by Merzkirch 
(1974) and Hinze (1975) and the more recent article by Maxey 
and Riley (1983). 

The point in the flow at which the tracer particles are in

troduced, the rate of particles released to the flow, and the 
length of the exposure time all determine whether one 
visualizes streamlines, streaklines or particle paths (Merz
kirch, 1974). The relative speed between the flow and the 
observation frame of reference must also be considered when 
interpreting flow visualization data. As metioned in Section 1, 
visualization of time-dependent flows is particularly prob
lematic due to the fact that streaklines, streamlines, and parti
cle paths do not coincide. 

For the purpose of this article, we further subdivide the par
ticle visualization techniques to those that use spherical par
ticles and those that utilize disk-shaped particles, where the 
length scale in one direction is much smaller than that in the 
other two orthogonal directions. Examples of the use of both 
kinds of particles in unsteady flows follow. 

2.1 Spherical Particles. Examples of spherical particles 
used for flow visualization are hydrogen bubbles or solid par
ticles, in liquids, and helium bubbles or dust particles, in 
gases. Solid particles do not change shape during the motion 
with the fluid, while gaseous bubbles can change shape. Ac
cordingly, the drag on gas bubbles is a function of both the 
velocity difference between the fluid and the tracer and the 
deforming forces acting on the particle. This greatly com
plicates the analysis of bubble motion in a fluid. 

The hydrogen-bubbles method, first introduced by Geller 
(1954; 1955), utilizes very small hydrogen bubbles from a fine 
wire acting as the cathode of a dc circuit for electrolyzing an 
electrolytic aqueous solution. Typically, the voltage is sup
plied in the form of square-wave pulses with peak-to-peak 
amplitude between 10-100 volts and the size of the bubbles is 
on the order of one-half the wire diameter. As the diameter of 
the bubbles is decreased, the buoyancy force is reduced faster 
than the drag force due to the local liquid motion, and the 
bubbles follow the fluid. 

McAlister and Carr (1978a; 1978b; 1979) used hydrogen 
bubbles in a water tunnel to study the phenomenon of dynam
ic stall on an oscillating airfoil. Bubbles were generated at elec
trodes placed at several chordwise locations along the upper 
surface of the airfoil, which primarily exposed the viscous do
main, as well as from an upstream electrode, which primarily 
marked the inviscid flow. The sequence of photographs in Fig. 
1 show both kinds of visualizations at different phases of the 
pitching cycle. The NACA 0012 airfoil underwent the large-
amplitude harmonic motion a (t) = 10 deg +10 deg sin cot, at a 
reduced frequency of 0.25 and a Reynolds number of 21,000. 
In the figure, the angle of attack changes from 12.1 to 19.7 
deg.2 The photographs vividly show the location of flow 
separation, the wake pattern, the shear-layer vortices, and the 
dynamic-stall vortex. McAlister and Carr's visualization ex
periments clearly demonstrated the basic difference between 
steady and unsteady separations. For a pitching airfoil, 
reverse flow starts near the trailing edge and propagates 
upstream along the surface as the angle of attack increases, 
without any sign of boundary layer detachment. Clearly, 
unsteady separation is not related to the point of zero skin 
friction or to the presence of reverse flow, two conditions 
always associated with steady separation on two-dimensional 
bodies (Gad-el-Hak, 1987b). 

An example of the use of solid particles for unsteady flow 
visualizations is provided by the work of Maxworthy (1979), 
who used small, neutrally buoyant wax particles to observe the 
flow around a two-dimensional model that simulates the wing 
motion of a small wasp (Encarsia formosa). By taking streak 
photographs of the model placed in a large container filled 
with either water or glycerine and using a camera with a 
known exposure time, Maxworthy was able to measure the 
local fluid velocity and, hence, determine the time-dependent 

Unless otherwise stated, flow is from left to right in all figures in this paper. 
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Fig. 1 Hydrogen'bubbles visualizalion of the critical stages of dynamic
stall. Rc = 21,000; K = 0.25; «(I) = 10 deg + 10 deg sin wt (from McAlister
and Carr, 1979). (a) Freestream electrode; (b) Model electrodes.

Fig. 2 Particle streak photographs of two·dimensional flow over
rotaling wings. I'te 13,000; time between photographs 0.5 s; camera ex·
posure time 0.06 s (from Maxworthy, 1979).

circulation around the model at any instant. Figure 2 depicts a
sequence of four photographs of the two-dimensional flow
over the rotating wings at a mean Reynolds number of 13,000.
The approximate time between photographs is 0.5 s and the
camera exposure time is about 0.06 s. The dominant presence
of the two separate vortices is apparent in the pictures. Max
worthy observed that the major part of the circulation created
by the wing motion is contained within these vortices and that
the circulation around the wing surface alone is of opposite
sign to that of the vortex, being dominated by the vortex in
duced flow directed towards the wingtip on the upper surface.
Maxworthy was able to account for the large lift forces
generated by small wasps in hovering flight by use of the so
called "clap and fling" mechanism (LighthiII, 1973).

A similar flow visualization technique was- used by
Koromilas and Telionis (1980) to study the unsteady laminar

Journal of Fluids Engineering

separation over moving walls. A glycerol-water mixture was
used to achieve low-Reynolds-number flow with a measurable
magnitude of velocity, and neutrally buoyant surface pellets
were used to capture the instantaneous two-dimensional flow
field around downstream- or upstream-moving circular
cylinders. Accurate quantitative information was provided by
the visualization methods and was complemented by laser
Doppler anemometer measurements. Koromilas and
Telionis's experiments were able to capture, for the first time,
the saddle-point-streamline pattern predicted earlier by the
theoretical work of Moore (1958), Rott (1956), and Sears
(1956). Koromilas and Telionis (1980) also used the same
visualization technique to determine boundary-layer velocity
profiles for transient and oscillatory ambient velocity fields.
Their results reveal that unsteady laminar separation responds
with time lag to external disturbances, in agreement with
unsteady stall data (McAlister et aI., 1978).

Helium-filled soap bubbles are ideal for visualizing airflow
in wind tunnels because the particle size and buoyancy can be
readily controlled. An interesting history of the method is pro
vided in the article by Mueller (1983). Examples of the use of
helium bubbles for visualizing complex, three-dimensional
flows with unsteady velocity components are given in the
paper by Santanam and Tietbohl (1985), who considered flow
fields occurring in power generation equipment such as
burners, furnaces, piping networks, pulverizers, and steam
drums. Ambient air was blown through a scale model of a par
ticular power generation setup, and 3-mm-diameter helium
filled soap bubbles were injected into the airflow. Santanam
and Tietbohl determined the actual flow directions from
observation of the flow pattern of the bubble streaks.

Using solid tracers, accurate quantitative data were deduced
from observing the flow pattern in the two-dimensional wake
induced by an impulsively started thin airfoil placed in an oil
mixture (Monnet et aI., 1985). The different velocity fields
resulting from the experiments were used to improve the cor
responding numerical simulations made by treating the
Navier-Stokes equations with a high-order, compact finite dif
ference scheme.

In recent years, the utility of particle-tracering visualization
techniques has been considerably enhanced by the develop
ment of digital image processing systems, holography, and
speckle photographic methods. These novel techniques allow
effective and efficient means of obtaining quantitative infor
mation in complex flows. In fact, the extent to which any new
flow visualization method can be used for quantitative
analysis is probably its most important feature in future ap
plications. The second edition of Merzkirch's (1987) book
provides a useful overview of these novel methods.

2.2 Scattered Light from Disk-Shaped Particles. Disk
shaped particles, where the length scale in one direction is
much smaller than that in the other two orthogonal directions,
behave quite differently from other foreign materials, such as
dye, smoke, or bubbles, added to a fluid for the purpose of
visualizing its motion. A single photograph using the latter
kind of tracers shows the cumulative results of all the various
processes that have transported and concentrated or dispersed
the tracer material, whether or not these processes are still ac
tive (Cantwell et aI., 1978). On the other hand, disk-shaped
particles are oriented in a systematic way by the three
dimensional rate-of-strain field in the fluid. Moreover, if these
particles are small enough, they respond very rapidly to
changes in the rate-of-strain field. Thus, information con
tained in a single picture is essentially information about the
current state of the motion, providing dynamic visualization
of the flow field. Examples of small reflective particles com
monly used in flow visualization studies are aluminum flakes,
titanium-dioxide-coated mica platelets, and fish flakes.

According to Savas (1985), the commonly quoted view that
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Downloaded 02 Jun 2010 to 171.66.16.92. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 3 Tracer particles visualization of an Impulsively starling cylinder.
Camera moves with the cylinder. Photographs by M. Coutanceau and R.
Bouard.

enough. However, Savas (1985) convincingly showed that the
reflective-flake flow-visualization technique may be rather un
suitable for observing low-amplitude shear waves in a
unidirectional high shear flow, and due caution must be exer
cised in interpreting the visualization results in such
applications.

Carlson et al. (1982) observed the evolution of turbulent
spots in plane Poiseuille flow using titanium-dioxide-coated
mica particles having a thickness of about 3 to 4 microns and a
diameter of 10 to 12 microns. Strong oblique wave packets
were observed at both the front of the arrowhead-shaped spot
as well as trailing from the rear tips. Once again, Savas (1985)
offered an explanation of why these wave packets were
observed in the Poiseuille flow of Carlson et al. (1982) but not
in the boundary layer flow of Cantwell et al. (1978). Savas
argued that shallow angles, almost parallel to the flow, of il
lumination and observation are necessary to observe these
low-amplitude waves in high shear flows.

Compared to classical dye or smoke visualization tech
niques, the method used by Carlson et al. (1982) provided a
more dynamic visualization of the flow disturbances, in
cluding those that propagated through the fluid and formed
regions of strong shear waves, vorticity, and breakdown to
turbulence. Unlike turbulent spots growing in laminar
boundary layers (Gad-el-Hak et al. 1981; Riley and Gad-el
Hak, 1985), the spots in Poiseuille flow were observed t?
undergo pronounced splitting. Carlson et al. offered a pOSSI
ble explanation for the lack of splitting in the case of a
boundary layer.

Coutanceau and Bouard (see p. 36 of Van Dyke, 1982) used
fine magnesium cuttings in an oil tank to visualize an im
pulsively starting circular cylinder. The six photographs in
Fig. 3 are taken with a camera moving with the cylinder, of
which only the lighted rear surface is seen. Three different
Reynolds numbers, 50, 500 and 5000, are shown at different
normalized times after the start of the motion, UUd, where U
is the instantaneous velocity and d is the diameter of the
cylinder.

The present author used titanium-dioxide-coated mica
platelets to visualize the wall region of a fully-developed tur
bulent boundary layer. A water suspension of the micro
platelets was made at a concentration of 2 percent by weight
and was injected through a spanwise slot on the surface of a
flat plate that was towed in a low-speed water tank. The left
to-right near-wall flow is shown in Fig. 4(a). A cine film from

500; 3.0

Re; Ul/d

50; 2.5

5000; 3.0

500; 1.0

50; 0.5

JThis is only true, of course, near the body before the vorticity (or the tracer
material) is appreciably diffused.

disk-shaped particles align themselves along the axes of prin
cipal normal stresses in the flow field is unsubstantiate~l. Sa.vas
presented a rational analysis of the nature of flow vlsuahz~

tion using such flakes. His analyses are based on the stochastic
treatment of Jeffery's (1922) solution for the motion of ellip
soidal particles in a viscous fluid, where thin flakes tend to
align with stream surfaces. Savas (1985) asserted that the
probability density function of Euler angles that describe the
orientations of the flakes is adequate to explain the ob
served light field in flow visualization experiments, provided
that the initial conditions of the particle's equation of motion
are treated as random variables. The flakes tend to align
themselves with the stream surfaces, but their finite thickness
causes rapid turnovers. Savas confirmed the predicted light
fields using several examples.

In his milestone presentation in which he introduced the
boundary-layer theory, Prandtl (1904) used very small flakes
of mica to visualize the initial motion of water as set up by a
plate moving from rest at right angles to itself. Prandtl
discussed the time-dependent development of the shear layer
that originated from the plate's edge. He stated that this shear
layer may be regarded as a Helmholtz surface of discontinuity
(vortex sheet) in the case of small viscosity (high Reynolds
number). Vortical motions were particularly easy to see with
these thin flakes because a great number of the particles had
the same orientation.

Many other examples of the use of mica or aluminum flakes
for both steady and unsteady flow visualizations can be seen in
the books by Prandtl and Tietjens (1934), Batchelor (1967),
and Van Dyke (1982). Weidman (1976) used aluminum flakes
to visualize the spinup and spindown of a cylindrical cavity.

In order to visually study unsteady separation, Taneda
(1977) used both aluminum powder and an electrolytic
precipitation method to mark the instantaneous streamline
and streakline patterns around several two-dimensional bodies
of simple shape. His paper provided many clear photographs
of the water flow patterns around circular cylinders, elliptic
cylinders, flat plates, and flexible plates, all performing basic
unsteady motions in an incompressible, viscous fluid. The
time-dependent motions considered were impulsive start from
rest, change of velocity, translatory oscillation, change of
angle of incidence, uniform rotation, rotatory oscillation, and
swimming motion. The streamline patterns, marked by the
disk-shaped particles, revealed the velocity field, while the
streaklines, marked by the colloidal cloud generated at the sur
face of the body by electrolysis of water, tagged the vortex
sheets shed from the surface. 3 Taneda (1977) provided a
pragmatic criterion for unsteady separation. He asserted that
the separation point is the point at which the boundary layer is
shed from the surface of the body and that it can be deter
mined experimentally as the point at which the streakline
separates from the surface (for a recent review of steady and
unsteady separation, see Gad-el-Hak, 1987b). Taneda re
iterated that although the streamline pattern changes accord
ing to the reference frame, the streaklines are invariant.

Turbulent spots developing in a laminar boundary layer
were visualized by Cantwell et al. (1978) using aluminum
flakes that were about 0.2 micron in thickness with their
largest dimension ranging from 5 to 30 microns. An extremely
dense suspension of aluminum powder was used to allow a
striking visualization of the low-speed streaks in the lower part
of the viscous sublayer. Wygnanski et al. (1979) conducted
hot-wire measurements in the back of a turbulent spot and
reported the existence of oblique wave packets trailing the
spot. Cantwell et al. (1978) were not able to visualize these
Tollmien-Schlichting waves using the aluminum flakes and
argued that their Reynolds number may not have been high

234JVo1.110, SEPTEMBER 1988 Transactions of the ASME

Downloaded 02 Jun 2010 to 171.66.16.92. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(a) Visualization using micro-platelets suspension.

(b) Visualization using conventional food·coloring dye.

Fig. 4 Low-Speed streaks in a turbulent boundary layer. R6• = 700.
Photographs by M. Gad·el·Hak.

which this photograph was taken clearly showed the low-speed
streaks and the accompanying bursting events.

3 Dye Visualization Techniques

Another kind of foreign material that could be added to a li
quid to render it visible is dye. In his famous experiment,
Reynolds (1883) was the first to demonstrate the transition
from laminar to turbulent flow by injecting a thin thread of li
quid dye into a flow of water through a glass tube. Since then,
numerous steady and unsteady flows have been visualized us
ing different dye-injection methods, including the significant
work at ONERA in France reviewed by Werle (1973). Some of
the more recent work is described in this section, classified ac
cording to the method of introducing the dye to the flow.

3.1 Classical Dye-Injection Methods. The dye is usually
introduced to the flow from small holes or slots provided in
the model under consideration or from a source external to the
body, such as a small hypodermic needle. The disturbance to
the main flow due to the ejecting device must be minimized. A
wide variety of dyes is available, including different food
coloring dyes, ink, milk, and the more recently used fluores
cent dyes. Illumination can be accomplished with banks of
floodlights, for an overall view of the flow region, or sheets of
laser light, most suited for the use with fluorescent dye where
any particular plane within the flow field can be visualized,
thus providing an extra degree of freedom in observing the
flow patterns.

The present author used food-coloring dye to visualize the
low-speed streaks and the bursting events in the near wall
region of a low-Reynolds-number turbulent boundary layer.
Figure 4 shows a comparison between conventional dye
visualization (Fig. 4(b) and that using reflective
microplatelets (Fig. 4(a)). The· displacement thickness
Reynolds number for the two runs is about 700.

Pullin and Perry (1980) used household blue dye mixed with
alcohol to visualize the growth of a two-dimensional starting
flow vortex formed at a wedge-like sharp edge. The neutrally
buoyant dye mixture was injected into the accelerating-
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decelerating water flow through several small holes at various
points on the centerline of the wedge model. Pullin and Perry
were able to mark the flow streaklines by carefully injecting
the dye before the commencement of each run, when very slow
residual motions existed in the water tank due to previous
runs. They observed various secondary-flow details that result
from the temporal primary vortex growth for different wedge
angles and different values of the time exponent in the
velocity-time power law describing the starting flow.

In the more complex flow of an oscillatory boundary layer,
Ohashi and Hayashi (1985) visualized the resulting laminar
turbulent transition by placing a thin layer of powdered milk
dissolved in water on the bottom of a U-shaped water channel.
A piston stroke caused the water to undergo a sinusoidal
movement, and the disturbance pattern at the milk-water in
terface indicated the generation, development, and decay of
turbulence occurring during each cycle of the oscillatory mo
tion. Ohashi and Hayashi observed primary and secondary in
stabilities as well as turbulent bursts similar to those seen in
unidirectional-flow boundary layers.

Although fluorescent dyes have been available for a long
time, the more recent availability of coherent light sources and
the ability to generate thin sheets of laser light have made
possible an extremely powerful visualization technique. A
dilute solution of fluorescent dye is more or less transparent
but becomes bright when excited with a light source of the ap
propriate wavelength. Thus, one can readily view a particular
plane in the interior of the flow region. In conventional dye
techniques, on the other hand, one can only see the outer
boundaries or the "skin" of the flow region marked by the
tracer.

The present author has used the laser/fluorescent dye
technique to visualize the turbulent spots or turbulent wedges
growing in a laminar boundary layer (Gad-el-Hak et aI.,
1981), the transition events in a decelerating boundary layer
(Gad-el-Hak et aI., 1984a), the discrete vortices shed from the
leading edge of a delta wing in steady flight (Gad-el-Hak and
Blackwelder, 1985; 1987a), the time-dependent flow around
three-dimensional lifting surfaces undergoing pitching mo
tions (Gad-el-Hak, 1987b; Gad-el-Hak and Ho, 1985; 1986a;
1986b), the natural and artificial bursting events in a turbulent
boundary layer (Gad-el-Hak and Blackwelder, 1988; Gad-el
Hak and Hussain, 1986), and the large-eddy structures in a
turbulent boundary layer (Gad-el-Hak and Blackwelder,
1987b). All the above experiments were conducted in a unique
towing tank where the model's carriage rides on two tracks
supported by an oil film (Gad-el-Hak, 1987c). Thin sheets of
light were generated from a 5-Watt argon-ion laser beam us
ing either a cylindrical lens or an oscillating mirror. Fluores
cein, Rhodamine-B, and Rhodamine-6G dyes were used,
which fluoresced green, dark red, and yellow, respectively,
when excited by the green laser light. Under floodlights, the
first two dyes fluoresced green and dark red while the
Rhodamine-6G dye had a faint red color. The dye in these ex
periments was seeped into the flow through slots and holes
machined into the different models. Dye was also released
uniformly from a model by covering its entire surface with a
thin, porous cloth saturated with dry dye crystals. As the body
moved through the towing tank, the dye dissolved slowly into
the surrounding water and marked the flow in the boundary
layer and separation region (Gad-el-Hak and Ho, 1986b).

Two examples of the above visualizations are depicted in
Fig. 5. A top view of a typical turbulent spot is shown in Fig.
5(a). The dynamics within the spot appear to be controlled by
many individual eddies, similar to those within a fully
developed turbulent boundary layer. Figure 5(b) shows the
breakdown of a decelerating laminar boundary layer. A well
defined route to turbulence was identified by Gad-el-Hak et
al. (l984a). First, the boundary layer became unstable to two
dimensional waves, which, due to the inflectional character of
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(a) Turbulent spot (from Gad·al·Hak at al., 1981).

(b) Decelerating laminar boundary layer (from Gad·el·Hak et at, 1984a).

Fig. 5 Laserllluorescent dye visualization.

the velocity profiles associated with the decelerating plate,
have substantially larger growth rates than their Tollmien
Schlichting counterparts. Secondly, the two-dimensional
waves were themselves unstable and developed a regular span
wise modulation. This in turn led to the formation of hairpin
vortices (Fig. 5 (b) that lifted away from the wall, stretched
and burst into turbulence.

A comparative analysis of the visualization techniques using
floodlight/conventional dyes, laser/fluorescent dyes or disk
shaped particles was presented by Gad-el-Hak et al. (1985). It
was shown that each method gives a unique and complemen
tary view of a given flow field. The conventional dye provides
a spatially integrated view of the observed flow structure.
Thus, details of the internal flow field are difficult to obtain.
By using sheets of laser light, the fluorescent dye enables the
investigator to obtain the anatomy of a flow structure. As
mentioned before, however, both the conventional and
fluorescent dyes show the cumulative result, or the integrated
history, of all the various processes that they experience from
the time of their release into the flow. The disk-shaped par
ticles, on the other hand, align themselves along the axes of
principal normal stresses imposed upon them by the flow;
thus, giving a more instantaneous view of the stress within the
flow field.

3.2 The Dye·Layer Technique. The time-dependent
pressure field associated with an unsteady flow often makes it
difficult to use classical dye or smoke injection visualization
methods. Not only is it difficult to release the tracer uniformly
into the flow due to the fluctuating pressure field, but also the
observed patterns are difficult to interpret. The dye-layer
technique, described by Gad-el-Hak (1986a) overcomes some
of these difficulties. This visualization method can be used in a
water towing tank facility. In brief, cotton strings with a
diameter of 1 mm are stretched horizontally on a rake and
painted with a concentrated solution of alternating-color
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fluorescent dye and alcohol. The alcohol is allowed to
evaporate, leaving the strings saturated with dye crystals. The
rake is then placed in the water channel, which has a weak,
stable stratification, and towed at a relatively low speed (1
cm/s) so that the wakes behind the strings are laminar. As the
dye is washed away from the strings, it forms several thin
horizontal sheets. These alternating-color layers of dye remain
thin, about 1 mm in thickness, due to the inhibition of vertical
motion caused by the saline stratification in the tank. The den
sity gradient in the tank is about 10- 4 gm/cm4 , which yields a
Brunt-Viiisiilii frequency (Turner, 1973) of N=D.D5 Hz. This
provides a time scale for gravity-driven motion that is far
longer than a typical time scale in the flow under considera
tion; hence the stratification should have negligible effect on
the dynamics of the flow. This conclusion was verified ex
perimentally by Gad-el-Hak (1986a) who used conventional
dye injection methods to conduct two similar runs in the
presence and in the absence of stratification in the towing
tank. The visualization patterns in the two runs were
indistinguishable.

The dye-layer technique has been particularly useful in in
vestigating the complex, time-dependent flow fields around
three-dimensional lifting surfaces undergoing large-amplitude
pitching harmonic oscillations (Gad-el-Hak and Ho, 1985;
1986a; 1986b). Sheets of laser light were projected in the
desired plane to excite the fluorescent dye layers. The alter
nating horizontal sheets of different color dyes remained
quiescent until disturbed by the moving lifting surface. Each
dye layer was in a sense a fluid material surface whose evolu
tion in time was visually recorded. Unlike conventional dye in
jection techniques, the dye layers marked the flow in the
separation region, the flow in the wake region, and the poten
tial flow away from the surface. This was particularly useful
for observing the irrotational motion induced by the leading
and trailing edge vortices associated with changing the angle
of attack of the lifting surface.

Figure 6 shows dye-layer visualization of small-aspect-ratio,
sharp-leading-edge rectangular wing undergoing the large
amplitude pitching motion O!(t) = 15 deg + 15 deg sin (21fft) at
three reduced frequencies, K = 0.2, 1.0 and 3.0. All three pic
tures were taken during the upstroke at an angle of attack of
20 deg. Figure 7 is a sequence of photographs depicting the
complete pitching cycle for the same wing at a reduced fre
quency of 3.0 and a chord Reynolds number of 8.63 x 103 •

Along the same lines, the complex flow around a model of a
rotating-wing aircraft was visualized using the same dye-layer
method (Jenks et al. 1987). A 1:40 scale model of an H-34
helicopter rotor was towed in the author's towing tank facility
and the collective pitch angle, the advance ratio, and the
longitudinal and lateral cyclings were adjusted independently
over normal field operating conditions. Under certain run
parameters, a negative loading was present near the tip of the
advancing blade and a pair of counter-rotating vortices was
shed from that tip. For the first time, the interaction of these
vortices with the succeeding blade, believed to be a major
source of helicopter noise and vibration, was observed directly
in these experiments. It is obvious that classical dye-injection
techniques would be extremely difficult to implement for such
a model where the blades are simultaneously moving forward,
rotating, and undergoing cyclical pitching.

4 Visualization Techniques Using Smoke

Smoke is used to visualize gaseous flows much the same as
dye is used in liquid flows. Unlike dye, however, "smoke" is
commonly a very concentrated field of extemely small par
ticles. These particles, usually less than 1 micron in diameter,
are large enough to scatter a sufficient amount of light for
observation but too small to be seen individually under normal
circumstances. Smoke or smoke-like materials, such as
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Fig. 8 Smoke photograph of a spinning body of revolution.
RL =3.2 x 105; V/U", =1.0; "'= -10 deg (from Mueller et aI., 1981b).

originated in the crossflow and spiraled around the body. ,
These crossflow vortices eventually broke down into tur
bulence, but did so in a distinctly different manner than ax
isymmetric waves. For certain run parameters, both two
dimensional waves and crossflow vortices appeared on the
spinning axisymmetric body. A typical example of the spin
ning case is shown in Fig. 8. The axisymmetric model is at a
negative angle of attack of 10 deg and the flow is from left to
right. The Reynolds number based on the bOdy length is
3.2 x 105 and the spin rate is 1500 rpm (ratio of peripheral
velocity to freestream = 1.0).

Fig. 7 A complete pitching cycle of a low·aspect·ratio rectangular
wing. Rc =8.63 x 103; AR =4; K =3.0, alf) =15 deg + 15 deg sin wt (from
Gad·el·Hak and Ho, 1986a).

Fig. 6 Dye·layer technique used to visualize a pitching lifting surface.
Rc =1.25 x 104; AR =4; all) =15 deg + 15 deg sin wt (from Gad·el·Hak,
1986a).

a. Reduced Frequency = 0.2

c. Reduced Frequency = 3.0

b. Reduced Frequency = 1.0

~-

• 193 .. 01 I~
I

vapors, fumes, and mists, can be introduced to the flow from
slots and holes machined into the model or from an external
source such as a smoke tube or smoke wire. The first use of
smoke visualization in a scientific experiment was reported by
Mach (1896). The development and refinement of the so
called smoke tunnel are due largely to the work of Brown
(1953) at the University of Notre Dame. An interesting history
of the early development of smoke visualization facilities is
given by Mueller (1980).

Transition events' in the boundary layer on spinning and
nonspinning axisymmetric bodies were observed using a single
smoke filament issuing from an upstream tube (Kegelman and
Mueller, 1986; Kegelman et a!., 1979; 1980; Mueller et a!.,
1981a; 1981b; 1985). The spectacular flow visualization
photographs that were produced showed clearly the formation
of two-dimensional Tollmein-Schlichting waves in the
nonspinning case and the subsequent breakdown of these
waves into vortex trusses. For the spinning body, vortices
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Fig. 9 Smoke photograph of a forced jet (from Ng and Bradley. 1988).

Fig. 10 Smoke wire photograph ~f poststall separation on an airfoil in
an oscillating freeslream. Rc =10 ; a =20 deg; K= 0.64 (from Brendel,
1986).

Kerosene vapor was also used to study the effects of
acoustically forcing an axisymmetric jet with low-level dis
turbances containing more than one frequency component
(Bradley and Ng, 1988; Ng and Bradley 1988). Figure 9 shows
a side view of the jet il11uminated with a vertical sheet of
argon-ion laser light. The response of the shear layer to the ar
tificial forcing depends on the frequency content, the
amplitude, and the relative phase angles and amplitudes
among the different frequency components.

For high-speed flows, Stanislas (1985) used a sheet of light
generated from a pulsed ruby laser to visualize the smoke
generated patterns of an air intake at high angles of attack.
With a laser light pulse with an energy of 60 mJ and a duration
of 15 to 20 ns, Stanislas was able to more or less freeze the tur
bulent motion and obtain ultrahigh-speed pictures of an in
compressible, high-Reynolds-number flow.

To produce small but discrete smoke streaklines, the smoke
wire techriique was developed by Raspet and Moore in the ear
ly 1950's (see Cornish, 1964) and subsequently refined by Cor
nish (1964), Sanders and Thompson (1966), Yamada (1973;
1979), Corke et al. (1977), Nagib et al. (1978), and Nagib
(1979). In this technique, a O.l-mm-diameter wire is uniformly
coated with minute droplets of lubricating or mineral oil that
is vaporized by the use of resistive heating, resulting in sheets

, of discrete streaklines. The Reynolds number based on the
wire diameter must be small, less than 50, which limit applica
tion of the technique to low-speed wind tunnels (less than 8
m/s). A synchronization circuit controls the duration of the
time the wire is supplied with the heating current and triggers a
camera and accompanied lighting after an adjustable delay.
Several techniques are available to coat the smoke wire with
oil, including a pressurized gravity-feed method (Corke et aI.,
1977) and a "windshield-wiper" device (Nagib, 1979). Nagib
et al. (1978) reported several applications of the smoke-wire
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technique, including studying flows near building models in
simulated atmospheric boundary layers, investigating wakes
of bluff bodies, examining transitional and turbulent bound
ary layers, and recording shear layer instabilities.

A variety of unsteady separated flows was studied by Adler
et al. (1985) using synchronized flow visualization techniques.
They used both a smoke rake and a smoke wire to deliver
dense, stable, and reproducible smokelines capable of pro
viding a highly reliable base for measurement and comparison
of flow disturbances. Single and multiple phase-locked
stroboscopic pictures were taken of the vortical flow field in
duced by an airfoil oscillating at high reduced frequencies and
high angles of attack. The visualization approach used by
Adler et al. permitted rapid assessment of the spatial and tem
poral dependence and the three-dimensionality of an unsteady
flow across a wide range of variables.

Chambers and Thomas (1983) used the smoke-wire tech
nique to study the initial formation and growth of turbulent
spots. They were the first to visually observe the oblique waves
trailing the spot. Recall from Section 2.2 that Wygnanski et al.
(1979) detected these waves using a hot-wire probe, while
Cantwell et al. (1978) were not able to visualize the oblique
waves using aluminum flakes.

Brendel (1986) used a vertical smoke wire to visualize
poststall separation on a Wortmann FX63-137 airfoil at a
Reynolds number of 100,000 subjected to an oscillating
freestream. Figure 10 depicts the airfoil at a constant angle of
attack of 20 deg. The freestream oscillated sinusoidally at a
frequency of 11 Hz (reduced frequency = 0.64) and a max
imum amplitude of 4 percent of the mean speed. Brendel's
results illustrated the dynamic character of a laminar separa
tion bubble subjected to a low amplitude oscillation in the
Reynolds number.

5 Optical Techniques

Visualization techniques that make use of variations in the
refractive index within a flow field are considered under this
topic. These include the shadowgraph technique, schlieren
method, interferometry, flow birefringence, and the more
recently available holographic techniques (Lauterborn and
Vogel, 1984). The optical index of refraction of a fluid is a
function of its density, so any of the above techniques can be
used where there are sufficient spatial and/or temporal density
changes in the flow field. This is the case in high-speed gaseous
flows or in liquids with salinity or temperature stratification.
Mueller (1985) reviewed the role of optical visualization
techniques in providing the necessary insight for the develop
ment of theoretical models of complex afterbody and base
flows.

A unique flow visualization technique, particularly suited
for low-speed unsteady flows, was described by Pierce (1961).
He investigated the shedding of vorticity from the edges of a
plate that was accelerated normal to itself from rest in still air.
At the relatively low speeds used in Pierce's experiments, an
ordinary shadowgraph technique cannot be used directly
because of insufficient density changes in the flow field.
However, artificially introduced density changes in the flow
allowed the use of a spark-lighted shadowgraph system to
show the details of the vortex sheet. Density changes were
caused either by heating a column of air just outboard of the
edge of the plate or by coating the upper and lower surfaces of
the plate with benzene. Using the former method, the plate ac
celeration caused hot air to be drawn behind its lee side and to
be on the inner side of the resulting vortex sheet, yielding very
clear pictures of the surface of discontinuity. In the sec
ond method, the vaporization of the benzene was increased
due to the air flowing over the surface and, because of the dif
ference in density between the vapor and the air, the paths of
their boundaries were clearly seen in a shadowgraph picture.
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Fig. 11 Shadowgraphs of an accelerating plate with a sharp edge (from
Pierce, 1961). (a) t =7 ms; Uoo =3.7 mls; (b) t= 11 ms; Uoo = 3.7 mls.

This is shown in Figure 11 at two different times after the stop
ping of the plate. The resulting photographs show small-scale
undulations and the formation of a number of centers of vor
ticity along the well-known large-scale vortex sheet that roll up
along the edges of the plate (Prandtl, 1904).

As mentioned before, visualization techniques that make
use of variations in the index of refraction within a flow field
can also be used in liquid flows. Several examples of visualiza
tion methods used in a stratified water channel can be found in
the article by Lin and Pao (1979). Both shadowgraph and dye
visualization were used to study turbulence decay, wake col
lapse, and horizontal vortices in a stratified medium. These
techniques can be used for both steady and time-dependent
flows.

Holographic high-speed interferometry was used by Eisfeld
(1985) to observe large fields of fast-changing flows and the
propagation of highly turbulent flames. A rotating-mirror
camera with an external electro-optical shutter was specifically
developed to yield the very short exposure time, the very high
framing rate, and the high optical resolutions required for
recording the events inside a model of an internal combustion
engine.

6 Chemical Techniques

Flow visualization techniques that utilize a chemical process
include the hydrogen-bubbles method described in Section 2.1
(chemical/electrolytic reaction), the titanium tetrachloride
technique (chemical reaction), the tellurium method (ioniza
tion/electrolytic reaction), thymol blue dye (electrolytic reac
tion), and several chemical excitation techniques such as flash
photolysis, spark tracing, luminescence, and fluorescence
(described in Section 3.1).

The use of titanium tetrachloride for visualizing air flow
was first reported by Simmons and Dewey (1931). This col
orless liquid with a pungent acid smell reacts with the moisture
in the air to produce a dense, white fume (smoke). This tech-
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nique has been used for visualizing unsteady flows by Taneda
(1977) and more recently by Freymuth and his colleagues
(Freymuth, 1985; Freymuth et aI., 1985a; 1985b; 1985c;
1985d).

Taneda (1977) investigated the time-dependent flow around
a flexible body performing a large-amplitude progressive wave
motion. He observed the behavior of a thin layer of titanium
tetrachloride introduced into the boundary layer at the leading
edge of a waving rubber sheet placed in a wind tunnel. Taneda
concluded that, when the wave velocity is smaller than the
freestream velocity, the boundary separates at the back side of
the first wave crest. On the other hand, the boundary layer
never separates when the wave velocity is larger than the
freestream velocity.

Freymuth and his colleagues used titanium tetrachloride to
visualize the accelerating flow around an airfoil placed at dif
ferent angles of attack and to study the vortical pattern
development during dynamic separation. Their results, sum
marized in the review article by Freymuth (1985), emphasize
the unity of the field of dynamic separation and include a
useful descriptive vocabulary for different vortex pattern
developments, such as vortex aggregation, crowding, elicita
tion, nipping, pairing, shedding, and splitting.

Two examples of Freymuth's visualization are shown in
Figs. 12 and 13. The accelerating flow around an NACA 0015
airfoil at (X = 30 deg is depicted in the three photographs in Fig.
12. The flow starts from rest and uniformly accelerates at the
rate of 2.4 m/s2 • The Reynolds number based on the chord
and acceleration (Re=al12 C312 /v) was 5.2x 103 • Primary,
secondary and tertiary separation vortices appear near the
leading edge of the airfoil as time proceeds. Figure 13 com
pares the same accelerating flow at the two extreme angles of
attack of 80 and 90 deg. In this case, separation occurs near
both the leading edge and the trailing edge of the airfoil.

Examples of electrolytic reaction techniques include the use
of hydrogen bubbles (Geller, 1954; 1955), tellurium (Wort
mann, 1953), and thymol blue dye (Baker, 1966). In all three
methods, two electrodes are introduced into an aqueous solu
tion, the negative electrode (cathode) being usually a thin
straight wire placed perpendicular to the mean flow direction.
A dc voltage is then applied continuously or intermittently to
effect the electrolytic reaction. In the hydrogen bubbles
method, the water molecules are electrolyzed into hydrogen
bubbles at the cathode and oxygen at the anode. In the
tellurium method, the thin wire cathode is made of, or coated
with, tellurium that is ionized with the application ofan exter
nal voltage. With oxygen present in the surrounding fluid, the
tellurium ions are brought into a state of colloidal suspension
that appears in the form of a black dye. The thymol blue
method relies on the change of color of the aqueous solution
of thymol blue dye when voltage is applied, causing the fluid
to become acidic near the anode and basic near the cathode.
Since thymol blue is orange-yellow in an acidic environment
and turns to blue if the solution becomes alkaline, a small
cylinder of dark blue solution is formed around the cathode
every time a voltage is applied between the electrodes.

Unlike the three visualization methods described above, the
flash photolysis technique does not require the presence of a
cathode wire in the flow. Introduced by Popovich and Hum
mel (1967), the technique utilizes a photoactive solution and a
suitable light source. Examples of photoactive solutions in
clude pyridine dissolved in ethyl alcohol and nitrospyran
dissolved in kerosene. A pulsed ruby laser can be used to in
itiate photochemical dye production along the whole path of
the laser beam through the fluid. The main drawback of this
technique is the unusual working fluids that must be used.

Other chemical excitation techniques include the
luminescence method used by Nakatani and Yamada (1985)
for measuring the instantaneous velocity distribution in a
nonstationary flow of glycerine aqueous solution containing
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Fig. 12 Titanium tetrachloride visualization of an accelerating flow
around an airfoil. Re = 5.2 x 103; cr = 30 deg; acceleration = 2.4 mls2

(from Freymuth, 1985).

(b) cr = 90 deg.

Fig. 13 Titanium tetrachloride visualization of an accelerating flow
around an a1rfoll at very high incidence. Re =5.2 x 103; accelera·
tlon =2.4 mls (from Freymuth, 1985).
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Fig. 14 Vortlcal flow as depicted by Leonard da Vinci (reproduced from
Cornish, 1982).

zinc sulfide particles. A pulsed laser induced luminescence pat
terns in the turbulent flow inside two rectangular tubes of dif
ferent aspect ratios. A video camera with night-vision
capability was used together with a system of rotating prisms
to record those patterns at high observation rates. From the
visualization results, Nakatani and Yamada concluded that
the dimensionless spanwise spacing of the longitudinal vor
tices in the boundary layer increases by about 260 percent as
the tube aspect ratio increases from 1 to 4.

7 Naturally Visualized Flows

Some flows can be visualized naturally because of the
presence of foreign additives that have not been added by the
experimentalist, the existence of a liquid-gas interface, or
some other occurrences that result in sufficient contrast to
render the flow pattern visible. Leonardo da Vinci sketched
and wrote about such a flow around 1509. He observed the
formation of bubbles and eddies as a free waterjet issues from
a square hole into a pool and drew the sketch reproduced in
Fig. 14. Da Vinci wrote (translated): "So moving water strives
to maintain the course pursuant to the power which occasions
it and, if it finds an obstacle in its path, completes the span of
the course it has commenced by a circular and revolving move
ment." This is perhaps the earliest reference to the importance
of vortices in fluid motion.

A look at the sea on a windy day, the clouds, water from a
faucet, smoke from a chimney, or even a lighted cigarette pro
vides many examples of "naturally" visualized natural and
man-made flows. The lecture by Cornish (1982) contains col
ored photographs of an ocean whirlpool, a hurricane, a tor
nado, a swirling spiral galaxy, satellite picture of the vortex
wake behind an island, the explosion of an atomic bomb, and
vortical clouds on the surface of Jupiter. It is, of course, im
possible to seed, artificially, any of these large-scale flows. We
who work in fluid mechanics are indeed fortunate that our
subject is, sometimes, naturally visualized!

High-speed liquid jets issuing in air can also be directly
observed because of the sudden change of the index of refrac
tion at the air-water interface. For example, Hoyt and Taylor
(1977a; 1977b) visualized the instabilities occurring in high
Reynolds-number waterjets discharging into stagnant air using
a specially designed high-speed camera and lighting to furnish
maximum detail. These instabilities include the axisymmetric
mode accompanying the transition from laminar to turbulent
flow, spray formation as a culmination of axisymmetric
disturbances, and, further downstream, helical disturbances
that result in the entire jet assuming a helical form. The final
disruption of the jet is due to amplification of the helical
waves. In the example shown in Fig. 15, a water jet is discharg
ed into surrounding air that moves at 8, 40, and 80 percent of
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(a)

(b)

(c)

Flg.15 High·speed water jet in a coaxial air stream. The jet Is emerging
from the axisymmetric nozzle at 27 m/s; nozzle diameter = 3 mm;
distance from nozzle =760 mm (from Hoyt and Taylor, 1977b). (a) Air
speed = 2 m/s; (b)Air speed = 11 m/s; (c) Air speed = 22 m/s.

(a) Turbulent wedge embedded in a laminar boundary layer.

(b) Fully·developed turbulent boundary layer.

Fig. 16 Flow·induced waves on a compliant surface (from Gad·el·Hak
et aI., 1984b).

the jet speed as it merges from the nozzle. All three pictures
are taken 238 diameters downstream. It is clear that helical in
stabilities are suppressed as the relative speed be
tween the jet and the surrounding fluid is reduced. Hoyt and
Taylor (1977b) concluded that the amplification of helical
disturbances is due in part to aerodynamic form drag, which
decreases as the relative speed diminishes.

Unstable waves forming on the'surface of an elastic or a
viscoelastic (compliant) material due to the pressure fluctua
tions in a turbulent boundary layer have been directly ob
served by many investigators including Hansen and Hunston
(1983), Hansen et al. (1980), Gad-el-Hak et al. (l984b), Gad
el-Hak (1986b; 1986c; 1987d), and Riley et al. (1988). The

Journal of Fluids Engineering

static-divergence waves forming on a viscoelastic surface were
more readily visualized due to their sharp crests and broad,
shallow valleys. Typical examples of these waves on a soft
PVC plastisol are shown in Fig. 16. In the first picture, a
localized turbulent wedge is created in a laminar boundary
layer by placing a single roughness element on the surface of a
fiat plate towed at low speed in a water channel. The static
divergence waves appeared only under the turbulent wedge. In
a fully-developed turbulent boundary layer, the waves ap
peared everywhere as shown in Fig. 16 (b).

8 Concluding Remarks

Many flow visualization techniques that were developed for
observing time-independent flows can be readily adopted for
unsteady flows. The examples given in this paper include
methods that require the addition of foreign materials, optical
techniques, chemical methods, and "naturally" visualized
flows. Possible pitfalls in interpreting the visualization results
from unsteady flow experiments were elaborated in this
article.

The present review is by no means exhaustive, and many
more visualization methods not mentioned here can be used in
both steady and unsteady flows. A look at the number of
papers presented during the' past four International Sym
posiums on Flow Visualization (Tokyo, 1977; Bochum, 1980;
Ann Arbor, 1983; and Paris, 1986) is enough to convince the
reader of the fecundity of flow visualization researchers.
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Exploration of the Iceformation 
Method Applied to a Diffuser 
The design of optimum flow surfaces has been a challenging task for fluid 
dynamicists ever since the concept of fluid drag was realized. This paper will serve to 
introduce another method of flow surface design which has the potential to over
come the difficulties of present analytic and experimental methods. Natural design is 
introduced as an alternative to scientific design. The iceformation method is defined 
as harnessing the natural process of ice formation to perform geometric variations. 
The flow field has the direct opportunity to influence and optimize the geometry 
development. The hypothesis of design optimization is tested by an exploratory ex
ample of the method. The example is a fundamental but nevertheless difficult design 
problem of a diffuser. Use of the iceformation method resulted in the design ofdif-
fusers with higher pressure recovery performance than conical diffusers of the same 
length and area ratio. 

1 Introduction 

Surface Geometry Design Goals. In internal and external 
flows the fluid field is deformed by the fixture or body sur
face. Fluid flow changes to meet, flow over, and finally leave 
the surface. The shape of the surface relative to these three in
tervals determines the performance. The transfer of energy 
between the flow and the surface is in the form of viscous 
work and heat transfer. Typically the goal is to design op
timum body or fixture surfaces that transfer the least energy 
with the flow. This has direct significance on fuel or 
maintenance costs of turbomachinery and transportation 
devices. For an external flow, the body would have least drag 
for a given speed. For an internal flow, the flow would retain 
the maximum of available energy when interacting with the 
fixture. 

l.A The Classification of Design Tree. To discuss the 
iceformation method, it is necessary to examine the relevance 
of present geometric design approaches and distinguish the 
basic philosophical differences this new method offers. The 
classification of major design philosophies can be displayed by 
a relative tree (Fig. 1). 

The initial basic surface geometry is the "parent shape." 
About this, variations in geometry occur to obtain another 
shape. The first tree level signifies the mechanism of the 
geometric variations. With the introduction of natural 
processes as design tools, a new class of design methods is ob
tained. The mechanism of geometry variation can then be 
categorized into natural and scientific designs. The second tree 
level signifies the type of environment which causes the 
geometric variations. The further left the branch, the more 
human controlled the design environment. Below each second 

level branch is an evolution loop. Each loop is made of two 
components: the conditions and geometry reaction to those 
conditions. Evolution of a geometry occurs when the condi
tions of the design environment change. The loop forms an 
iteration of variations applied to a starting parent shape 
geometry. 

Scientific Design Mechanisms. The scientific design 
methods are common and can be subdivided into analytical 
and experimental methods. Analytic design consists of using a 
mathematical simulation of the flow and altering the surface 
geometry until the surface satisfies given criteria or con
straints. For example, optimal external shapes were obtained 
by varying the geometry under constraints such as constant 
wing profile area, contour moment of inertia and length, 
volume or enclosed area [1, 2, 3,]. In describing a high speed 
aircraft or missile nose, Pike [4] showed how a parent shape 
could be conceived and then optimized numerically. The 
analytical approach contains approximations in the physical 
modeling of the flow and in the mathematical procedures used 
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Design by 
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Analytical Experimental 

Condition: 
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to solve for the geometry. Accordingly, these calculations may 
result in a less than optimum geometry for real conditions. 

The experimental approach utilizes scale models of the 
parent shape in actual flow field conditions. The geometric 
variations are influenced by flow measurements and the 
human decision for surface movement. The development of 
an optimum flow surface using experimental means is ar
bitrary and local optimization does not guarantee a global op
timum. One example [5] is the design of a converging/diverg
ing nozzle for a two phase transonic flow (water/steam). The 
axisymmetric nozzle was designed by random variation of a 
finite number of wall sections starting with a De Laval nozzle 
(55 percent efficiency). Improvement in performance was the 
criterion for acceptance of the next generation. The process 
was stopped at step 45, a nozzle with multiple rings and 80 per
cent efficiency. The limitation is that the variations are finite 
in number and magnitude and the randomness is indirect and 
expensive to evaluate. 

The alternative to random variations would be to vary the 
geometry based on the experience of the designer. The 
geometry search would benefit but also be limited by the 
designer's understanding of what is good or bad in similar 
design problems (creativity). Often design optimization 
employs simultaneous or iterative use of both scientific 
classes: analysis and experimentation. 

Natural Design Mechanisms. The natural approach is 
unexploited when compared to scientific methods. Geometric 
variations occur naturally to satisfy an extremum principle. 
This principle is a central theme in the science of ther
modynamics and calculus of variations. The natural designs 
can be categorized into harnessed designs and pure designs. In 
one class, the natural processes which provide geometric varia
tions are harnessed by utilizing them in a controlled environ
ment. The flow surface geometry then forms by the natural 
application of the geometric variations. The flow can in
fluence the surface; simultaneously, the surface alters the flow 
and performance. In natural designs, humans have no in
fluence on the geometry result other than specifying con
straints. The order of the geometry variation is not limited by 
scientific understanding. 

The pure natural design class encompasses all objects ex
isting in nature. By definition the designs have evolved under 
conditions and constraints not specified by humans. The pure 
natural designs are seldom useful in human devised 
mechanisms because of the free conditions during the design 
evolution. 

l.B An Exploration of the Iceformation Method. One ap
proach of harnessed natural design is the iceformation 
method. This involves the use of water as a flow medium 
which flows over a cooled (sub-freezing) surface. Over time, 
water will solidify naturally on the parent surface forming an 
altered surface geometry (Fig. 2). The new geometry perturbs 
the flow field. The word "formation" is used to represent the 
global variation of the interface geometry by either local ice 
growth or ice decay. The phrase "ice formation" refers to the 

Uoo-free stream flow 

<arent_ 
surface 

time= t 

flow 
y=I(x,t) 

Fig. 2 External iceformation 

natural process and the word "iceformation" refers to the 
harnessed process as a design method. The mechanism 
resembles measurement of heat transfer by use of Reynolds 
analogy and the chemical species transfer of naphthalene. 
However, the change in ice geometry is carried beyond the 
small deformations used in the naphthalene method and the 
ice allows material deposition on the surface, not just decay. 

The distribution of geometric change is governed by a 
design criterion. For the iceformation method, the design 
criterion is natural but can be understood in an analytical 
statement by formulating the heat transfer problem at the in
terface. The ice formation can be described by an interface 
equation which balances the ice and water heat transfers at the 
interface. Thus the interface equation as a function of the 
tangent coordinate, x, which describes the formation in the 
normal direction, y, is shown in equation (1). 

QPI 
dl 

~dT 
-k, 

dT, 

L dy 
L l , - * ' [ • 

dTa 

dy y = I 
(1) 

Using the Reynolds analogy we can put the formation rate in 
terms of fluid shear on the surface. Equation (2) shows a chain 
rule. 

L dy 
i -_\dTfv] r d u l T \dTw 
J.c=/ L du J«=o L dy }y=i n L du du J«=o 

(2) 

Substituting equation (2) into equation (1) and solving for for
mation rate we obtain equation (3). 

N o m e n c l a t u r e 

y = parent shape normal 
coordinate 

x = parent shape tangent 
coordinate 

/ = interface position 
5 = water channel width 
P - static pressure 
h = hydrostatic pressure head 
e = experimental quantity 

n 
a 

Ah 
V, 
Re 
Sr 

g 

cP 

= population size 
= standard deviation, S.D. 
= differential h across fixture 
= inlet average velocity 
= Reynolds number 
= gravitational conversion, 

mass to force 
= gravity on the earth 
= pressure recovery 

coefficient 

ft, 
Tw,Tj 
kw,kj 

H>Pi 
T 

dt 
Q 

tailpipe correction factor 
temperature 
conductivity; water, ice 
water viscosity, Ice density 
fluid shear at the ice 
interface 
time differential 
latent heat of fusion 

Journal of Fluids Engineering SEPTEMBER 1988, Vol. 110/245 

Downloaded 02 Jun 2010 to 171.66.16.92. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



dl 

~dt~ 

k, [-3^-1 
P,0 I- by J 

kK -dTa 

du 
(3) 

P,Q\-dyh=i vQ.Pi 
The flow field will adjust the ice surface through the shear 
force and the ice boundary geometry will adjust the flow field 
through melting and growing. Regions of low shear, such as 
separation, may accumulate ice due to low shear stress and 
stagnating fluid. High shear stress areas will tend to decay the 
surface and allow more room for the flow. The process will 
continue until a global steady state is reached: when the local 
fluid convection matches the local surface conduction. Once 
the parent shape, cooling load, and fluid boundaries are fixed, 
the geometry evolves without any human interference. 

Understanding of the Ice Formation Process. Basic fluid 
regimes involving ice formation have been studied both ex
perimentally and analytically to provide a thorough under
standing of the heat transfer and phase change mechanisms. 
The ice formation has been treated as an interference to the 
water flow or as a predictable interface transient. With this 
view, one can only seek to predict and control or eliminate the 
phenomena. However, these studies many be used to under
stand the ice growth/decay process for various parent surfaces 
and flow regimes and how it may be utilized as a design tool 
instead of eliminated. Basic geometries of flat plates, rec
tangular channels, cylinders and tubes portray a fundamental 
illustration of what occurs during ice formation. 

The fundamental external problem of a flat plate flow with 
ice formation has been thoroughly examined by Hirata et al. 
[6] and analytically by Stephan [7]. Ashton and Kennedy [8] 
studied the natural ice ripples forming on the underside of a 
river ice cover. The internal flat plate, a flow channel, has also 
been studied. This regime is related to rectangular ducts and 
slots which may occur within fluid machinery. Analytical 
work by Cheng and Wong [9] and Bowley and Coogan [10] 
uncovered the phenomena in a developing boundary layer 
flow. 

The cylindrical problem has also been studied extensively 
because the simple curved geometry of a cylinder is a good 
partial model of complicated geometries. The external 
cylinder problem has been studied experimentally by Cheng, 
Inaba, and Gilpin [11] and Carlson [12]. These experiments 
have displayed the iceformation phenomena about a flow 
separation. Carlson's approach discussed the possibility of an 
optimized geometry. Unfortunately, flow testing of the cylin
drical shapes did not show differences in drag because the test 
apparatus error overwhelmed the measurements. The internal 
cylinder, in tube form, has been examined fully by Zerkle and 
Sunderland [13] and Thomason, Mulligan, and Everhart [14]. 
Gilpin [15] demonstrated the phenomenon exposed to a tur
bulent transition flow. 

The references cited may be used as a basis for designing an 
ice formation apparatus. Complicated geometry problems 
may be separated into simpler models such as cylinders and 
flat plates. The information provides the relationship between 
ice geometry and relevant parameters to be varied and 
measured. 

Internal Iceform-Sudden Enlargement Diffuser. The ex
ample treated in this paper examines the geometry transition 
region of an internal diffuser. The diffuser problem has 
become important because the increasing technology in turbo-
machinery has demanded the highest performance of all flow 
components. The diffuser has been a difficult device to design 
because flow separation (stall) often occurs in the adverse 
pressure gradient. This three dimensional fluctuating flow is 
complicated by effects of inlet and exit conditions. Heskestad 
[16] has shown that suction at the inlet greatly improves the 
performance of sudden enlargement diffusers. Another ap
proach by Adkins [17] deals with utilizing a controlled vortex 
to aid in the flow expansion. Bleed flow off the vortex is 

necessary to maintain a stable vortex. The treatment in the 
present paper varies the wall geometry, not the flow field; 
therefore no suction is used. 

Parent Surface Description. A diffuser geometry was 
studied as a fundamental example to apply the iceformation 
method. The parent shape chosen was the extreme diffuser 
geometry of a sudden enlargement in a pipe flow (Fig. 3). The 
diametral step and enlarged cylinder were cooled to allow an 
ice layer to be maintained. Inlet water flowed downward 
through a nozzle of diameter 3.8 cm to the enlarged diameter 
of 10.2 cm. An inlet nozzle served to fully develop the inlet 
velocity profile and provided insulation to form an adiabatic 
boundary condition in the small diameter. The exit was a sud
den contraction to the previous small diameter. The maximum 
steady state area ratio is different since ice growth forced by 
refrigeration into the flow field decreased the channel open
ing. The flow rate and bulk tank temperature can be adjusted 
to allow laminar to turbulent inlet conditions which cause dif
ferent flow fields and resulting iceforms. The geometry results 
are categorized by these two experimental constraints. 

2 Iceformation Technique 

2.A Iceformation Apparatus and Method. The apparatus 
is made of two systems: a water system and a refrigeration 
system. As shown in Fig. 4, the two systems meet at the ice col
umn. This vertical chamber is an open evaporator containing 
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Fig. 3 Sudden enlargement parent shape 
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Fig. 4 Iceformation apparatus 

the parent surface: a copper walled sudden enlargement. The 
enlargement is made of copper which has low resistance to 
conductive heat removal from the ice layer. It is surrounded 
by evaporating (boiling) freon which facilitates heat removal 
at constant temperature and high film coefficient. The ice col
umn refrigeration system is the backbone of the iceform 
technique. It provides the cooling load necessary to support 
convective cooling of the water channel and ice growth into 
the water. 

Water System. Water flow to the ice column is provided 
by a 1/3 H.P. Goulds pump. The water flow to the ice column 
is regulated by a bypass and a forward valve. This system sup
plies a maximum of Re = 12,000 based on the inlet diameter of 
3.8 cm. During the experiment, the flow rate is maintained by 
adjusting the control valves sufficiently to keep the flow meter 
reading constant. It is desirable for the maximum equilibrium 
area ratio obtained to be the same for each iceform experi
ment. This can be obtained approximately by maintaining a 
constant thermal capacity (above freezing reference) flow rate 
to the inlet of the ice chamber. This is obtained by multiplying 
flow rate by the bulk water temperature (in Celsius) and water 
specific heat. 

At some time the iceformation transient will approach a 
steady state geometry. The capturing time approximates the 
steady state time. The specimens were captured approximately 
one hour after the bulk tank temperature transient reached a 
constant value. The nominal capturing time was 6 hours. Ac
tual steady state time is an unknown parameter. Many ex
periments would have to be run to detail the variation of 
geometry versus capturing time. 

Capturing. The internal iceform diffusers may be op
timum in pressure recovery due to minimization of energy 
dissipation. To check this hypothesis, each iceform diff user 
was flow tested and compared to the performance of standard 
diffusers (equivalent cone and sudden enlargement diffusers). 
The steady state ice surface cannot be tested for different flow 
rates as this will cause transients to begin. Instead, the iceform 
shape must be captured in a solid condition. 

This capturing involves two procedures. The first is to cast 
the internal shape with wax. Secondly, the inverse shape must 
be externally cast to obtain the previous iceform shape (Fig. 
5). This was accomplished by using a composite of Facsimile 
(R) impression material and plaster of paris for the bulk sup
port of the reverse cast. An inlet pipe of diameter 3.9 cm and 
an exit pipe of diameter 8.9 cm are used for each specimen. In
dividual specimens are slightly altered near the maximum area 
point to meet the exit pipe diameter (Fig. 8). Six diffusers were 
constructed with the Facsimile/plaster composite. Four are 
iceform results and the others are sudden enlargement and a 
15 deg cone (Table 1). 

Iceform shapes grown at different flow rates can be com
pared with standard diffuser geometries including the sudden 
enlargement for the given area ratio. Individual iceforms have 
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Fig. 5 Capturing process 

different diffusion lengths. Therefore, the specimens will be 
compared to the traditional scientific result of equivalent con
ical diffusers: cones of equal length and area ratio to each 
iceform specimen. 

2.B Flow Testing. The casting procedures yield a test sec
tion of the original iceform. The diffuser can be tested for 
static pressure recovery, (P exit-P entrance), versus flow rate 
and thus provide a dimensionless coefficient CP, a ratio of 
static pressure recovery over inlet dynamic head. 

CP 
>H 

2gc V, 
2g 

If the pressure losses decrease in a diffuser, CP increases. Flow 
tests of different diffusers provide comparison between the 
friction signatures in each specimen. The inlet flow in the per
formance tests was fully developed due to 14 diameters of pipe 
length upstream of the diffusers. Statistical reduction of the 
data yielded CP and a measurement confidence. From this we 
may test the hypothesis: Does the iceformation method pro
duce diffusers of improved performance over conical 
diffusers? 

Measurement Instruments. The pressure sensing is done 
with an instrument called a Hooke gauge. This resembles a 
manometer except that the vertical tubes are relatively large in 
cross-sectional area and the water-air interface heights are 
measured with depth micrometers (Fig. 6). The pressure 
probes mounted on the test section circumferentially average 
static pressure. The flow meter used during the performance 
experiment is of the turbine counter type. The display of the 
rotation is provided by a digital readout. The meter calibra
tion data was used to compute an equivalent inlet dynamic 
head. The raw data consists of 12 flow rate and differential 
head measurements for 16 different flow rates. 

Data Reduction. The differential head data is reduced by 
a set algorithm (Fig. 7). The flow rate and differential head 
data is processed by first finding an average and standard 
deviation (S.D.) for the 12 raw data samples for each nominal 
flow rate. The population is trimmed of outliers by Chavenet's 
Criterion (18). Using the population size and S.D. the point is 
rejected if 

>rfc\-
oV2 J 

1 

~2n 

where erfc( ) is the complimentary error function. After 
outlier rejection, a mean and S.D. are calculated for the re
maining flow rate and differential head populations. Then the 
flow rate is converted to inlet Re and inlet dynamic head using 
the meter calibration curve and inlet pipe geometry. The mean 
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CP and S.D. of CP are then calculated using the Ah and inlet 
dynamic head means and standard deviations. 

3 Results and Discussion 

The iceformation design technique can be examined both 
qualitatively and quantitatively. The results of the ice forma
tion and flow testing for each type of diffuser are examined by 
comparing the surface contours and pressure recovery 
performance. 

3.A Surface Plots. The surface plots are diffuser profiles 
obtained by linear tracing of the surface contours. Shown are 
six different diffuser geometries (Fig. 8). The plots are profiles 
of a cylindrical surface. Axisymmetry is apparent on a global 
scale. With many contours on a plot, one can see the actual 
differences of the surface contours. 

The wall slope directly after the inlet pipe is one important 
characteristic of the diffusers. Steep inlet slopes have a higher 
adverse pressure gradient than shallower ones. The pressure 
gradient will control the performance by the condition of 
separation and subsequent reverse flow. Typically a stalled 
diffuser has lower performance than one that does not 
separate. The reverse flow is a result of higher pressure 
downstream than upstream. In a diffuser, the performance in
creases when the pressure downstream can be increased for a 
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E X I T P 1 P E -

Fig. 8 Diffuser surface contours 

Table 1 Diffuser specimens and equivalent cones Specimen 
Number 

1 

2 

3 

4 

5 

6 

Ice Formation 
Water Condition 
Flow j Temp. 
Re *C 

sudden 
enlargement 

conical 

6800 

6800 

5100 

3400 

3 

3 

5 

S 

Steady 
State 
Area 
Ratio 

5.44 

5.44 

5.06 
ring 

4. 69 

6. 00 

5.44 

Equivalent Cone 
Geometry 

Length Angle 
cm 2 9 

0. 0 

19. 1 

12. 1 

10.2 

9.33 

8. 89 

180.0 

15.0 

22.3 

24.7 

33.0 

31. 9 

Tailpipe 
Length 
Ratio 

Vp2 

3.5 

1.36 

2. 14 

2. 36 

2.46 

2. 50 

given inlet flow, length and area ratio. If the reverse flow 
could be controlled, the loss mechanism can be controlled to 
increase pressure downstream. Often suction in the adverse 
pressure gradient region is used to control the separation. For 
example, Adkins [17] discussed the use of cusped wall at the 
inlet and bleed off to control the vortex. This resulted in short 
diffusers with relatively low total pressure loss. One iceform 
diffuser appears to have a vortex control in the form of a ring 
on the contour. An uncontrolled vortex would shed off the in
let and reduce performance. However, the ring may serve to 
control the vortex and resist the shedding. 

The monotonic diffuser contours, viewed separately, look 
similar in shape but the combined plot clearly shows the dif
ferences in the surface shapes. The normalized thermal 
capacitance flow rate of the inlet water can be calculated ap
proximately by multiplying the growth Re by the bulk tank 
temperature (Celcius). The higher thermal fluxes tend to yield 
higher equivalent cone angles and a larger equilibrium water 
space. This can be supported by the interface equation in the 
form of higher water heat transfer. Specimen 6 diverges slight
ly from the correlation of thermal flow rate to resulting 
equivalent cone angle. This indicates a higher order correla
tion between experimental conditions and resulting geometry. 
A higher order correlation is seen in other regimes such as a 
flat plate [6]. 

Specimens 3 and 4 were formed under the same flow rate 
and bulk water temperature. Apparently another experimental 
quantity is different between them due to the differences in the 
steady state surface contours. Specimen 3 was captured 7 
hours after starting and specimen 4, 6 hours. Perhaps 
specimen 3 is closer to steady state than specimen 4. Locally, 
small scale geometry variation may occur slowly after a 
general shape, specimen 4, is reached. This effect indicates a 
fine tuning of the interface geometry as steady state is ap
proached. The Reynolds number of specimens 3 and 4 was the 
highest that was considered in this exploration. The transition 
of the flow from laminar to turbulent may also be the ex-
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perimental constraint that varied. Verification of turbulence 
by measurement or flow visualization was prevented by the 
complexity of the internal ice chamber. 

These results show the complexity of the flow/ice interac
tion. Further experiments should include a study of geometry 
variation as the capturing time varies including inlet 
laminar/turbulent determination. A study with wider varia
tions in inlet flow temperature, inlet mass flow rate, inlet 
velocity profile, and changes in the parent shape temperature 
will be necessary to "nail down" the correlation between ex
perimental conditions and the resulting iceform diffuser 
geometries. 

3.B Pressure Recovery Performance. Flow testing the test 
sections (Table 1) for static pressure indicates the diffuser per
formance in terms of the pressure recovery coefficient CP 
(Table 2). Shown is the result of flow testing of six different 
diffusers. The results are displayed on the performance plot 
(Fig. 9). Both axes are non-dimensional but universality can
not be expected because the iceforms are grown at particular 
thermal and inlet flow conditions. The iceform diffuser per
formance is presented as a function of flow rate. The limit 
values (higher inlet Re) of the CP are recorded for comparison 
in Table 3. The lower inlet Re gives higher variation about the 
mean CP thus comparisons would be "cloudy" in this range. 
The la values indicate variations in the flow field and instru
ment reaction thus it is not "error" but confidence for the 
mean value. 

Table 2 Diffuser pressure recovery versus Reynolds number 

( cr t 2 <r ) 10* 

Nominal 
Re 

3350 

3850 

4300 

4750 

5700 

6700 

7650 

8650 

9700 

10700 

11700 

12800 

1 

1 2 + 7 . 7 

16 + 7 . 4 

14+5 .0 

6 + 3. 8 

9 + 2. 6 

11+1. 7 

12+1 .7 

11+1. 2 

11+0 .8 

12+0 .8 

12+0 .7 

13+0.7 

2 

51 + 10 

5 2 + 8 . 1 

5 4 + 8 . 0 

57 + 2 . 2 

6 2 + 2 . 6 

6 2 + 1 . 1 

65 + 1. 1 

66 + 1. 5 

6 7 + 0 . 8 

6 7 + 0 . 6 

6 7 + 1 . 0 

66 + 0. 6 

Spec imen # 
3 4 

54+13 

5 7 + 8 . 6 

5 0 + 4 . 5 

5 0 + 3 . 1 

5 5 + 3 . 1 

56+2 .6 

57+1 . 3 

58 + 1. 7 

58 + 1.5 

59+0 .6 

58 + 0 . 4 

5 9 + 0 . 4 

10 + 7. 2 

1 3 + 5 . 6 

1 0 + 2 . 7 

1 3 + 2 . 7 

1 9 + 2 . 6 

2 8 + 4 . 0 

27 + 1. 3 

2 9 + 1 . 5 

3 2 + 0 . 7 

3 7 + 1 . 8 

3 6 * 0 . 5 

4 0 + 0 . 9 

5 

26+11 

17+6 .9 

2 0 + 4 . 9 

19+4 .0 

2 4 + 1 . 5 

2 9 + 1 . 4 

2 9 + 2 . 1 

3 5 + 0 . 8 

3 8 + 0 . 5 

38 + 1. 1 

38 + 1. 1 

4 1 + 0 . 5 

6 

32+14 

51+23 

16+11 

1 3 + 6 . 1 

9 + 3. 3 

13 + 2 . 7 

22+1 . 2 

26+1 . 3 

3 0 + 0 . 5 

29 + 1. 8 

29 + 2 . 4 

36 + 1. 5 

Equivalent Diffusers. The iceform diffusers are compared 
to conical diffusers of the same length and area ratio. Conical 
diffuser performance in the literature indicates great diversity 
in presentation of the final curves. Ward-Smith (19) has com
bined many sources to indicate conical diffuser performance 
as a function of cone angle, tailpipe length and inlet condi
tions. The remaining task is then interpolating the curves to 
obtain reasonable equivalent cone performance. 

Table 1 shows a list of the diffuser specimens tested. The 
geometric data is used to obtain equivalent cone performance 
from Ward-Smith [19]. Tailpipe effect is accounted for using a 
factor, /3rf. The conditions for iceformation included a fully 
developed inlet profile and resulted in relatively short 
tailpipes. The reference cone data is given for long tailpipes 
and is reduced by dividing by f3d for shorter tailpipe effect. 
The equivalent cone performance is listed in Table 3. 

Performance Comparison. A comparison is made be
tween the constructed sudden enlargement performance, 
specimen 1, and the ideal pressure recovery for a sudden 
enlargement of the same area ratio. The constructed enlarge
ment performed below the ideal. This is due to real flow con
ditions such as separation and turbulent mixing. These 
mechanisms may exist during other specimen testing. The sud-

Table 3 Iceform diffuser comparison to equivalent cones 
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Specimen 

1 

2 

3 

4 

5 

6 

Equiva len t Co 

Tailpipe>8*D 
pp. 338 

Ideal= 30 

73 

59 

55 

40 

43 

i e s , Ref. W 

T a i l p i p e 
Factor fl( 

pp. 341 

1.00 

1.09 

1. 35 

1.45 

1.55 

1. 55 
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Fig. 9 Flow test of diffuser performance 

den enlargement test shows the maximum amount of losses ex
pected and the maximum deviation from a theoretical (ideal) 
performance. The 15 deg cone comparison shows that the two 
correspond to the nearest percent of pressure recovery per
formance. Therefore, the use of the charts in Ward-Smith and 
tailpipe correction yielded a reasonable set of equivalent cones 
for comparison to iceform diffusers. 

The comparison of the iceform specimens to their 
equivalent cones show that the iceform diffuser performance 
for pressure recovery is higher than equivalent conical diffuser 
performance. In particular, specimens 3 and 5 show a much 
greater pressure recovery than the cones. As discussed 
previously, specimen 3 has a controlling ring which improves 
the pressure recovery. Specimen 5 has the largest water space 
within the diffusion length and has the largest equivalent cone 
angle. 

Overall the iceform contours would be an improvement 
over the conical diffuser components in a flow system. The 
cones are simple geometries made by placing a first order fit 
between inlet and exit end points. The iceform geometries are 
not limited by mathematical fit or other scientific concepts. 
Rather, due to specified constraints the ice interface reaches a 
steady state geometry through natural geometry variation. 

Journal of Fluids Engineering SEPTEMBER 1988, Vol. 110/249 

Downloaded 02 Jun 2010 to 171.66.16.92. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



4 Conclusions References 
In conclusion, the iceformation method produced short dif

fuses with significantly higher pressure recovery performance 
over conical diffusers of the same length and area ratio. The 
short diffusion is obtained without any bleed flow. Resulting 
iceform diffuser length and area ratios are related to flow 
rate and inlet water temperature. The indication of nonlinear 
relationships and geometry dependence on capturing time and 
inlet velocity profile must be explored further. 

The natural variation in geometry is not limited by our 
knowledge of the flow field. This is displayed by the un
conventional results of the "ring" diffuser contour. It is 
unlikely that a diffuser with a ring constriction could be ob
tained through scientific methods. A constriction (decrease in 
area) in a diffuser (increase in area) goes against the grain of 
scientific understanding. These characteristics would make the 
iceformation method suited for design problems where high 
secondary flows occur due to space limitations. The applica
tion is direct because the design is arrived at in a working flow 
environment. 

This experiment constituted an exploration of the natural 
design technique of iceformation. The diffuser design example 
illustrated positive results but also identified points for im
provements. Further study covering wide ranges of parent 
shape and inlet flow conditions is necessary to clarify the 
usefulness of this method and determine detailed cause-and-
effect relationships between experimental conditions, captur
ing time, and the resulting ice geometry. 
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Unified Equation of Motion (UEM) 
Approach as Applied to Si 
Turbomachinery Problems 
Incompressible, blade-to-blade (SI surface) flow solutions for stators and rotors of 
turbomachines are obtained utilizing an approach which combines the equations of 
motion into a single elliptic, second-order partial differential equation for the 
streamline field. This Unified Equation of Motion (UEM) is obtained from the 
momentum equation which is modified by using a stream function that satisfies the 
continuity equation identically. The unified equation is solved numerically by use of 
a finite difference technique. The velocity field is determined by differentiation of 
the stream function field and use of the computed streamlines. The pressure field is 
then determined from an energy relation along the streamlines. The present method 
is similar to the classical Streamline Curvature Method (SLCM) in that a computa
tion grid is not required; however, the ellipticity of the flow field is preserved direct
ly by the unified equation of motion. The UEM solution is substantially more stable 
than the SLC method and yields the periodic stagnation streamlines directly. Body-
fitted curvilinear coordinates (quasi-orthogonals and streamlines) are generated 
naturally by the UEM solution. A number of comparisons of the results of the pre
sent method are made with experimental data and results of other numerical 
methods. These comparisons are made for incompressible two dimensional and 
quasi-three dimensional stationary and rotating blade sections. There is general 
agreement with accepted analysis procedures. 

Introduction 
Calculations of three-dimensional flow in rotating and sta

tionary blade passages of turbomachinery are approximated 
by assuming that the three-dimensional flows can be 
represented by separate, nearly orthogonal, two-dimensional 
flows. This appproach, originally proposed by Wu [1], leads 
to blade-to-blade (SI surface) solutions and a meridional (S2 
surface) solution representing the spanwise variation of the 
blade-to-blade flow. A further simplification is then intro
duced which eliminates the twist of the SI surface by assuming 
rotational symmetry. The S2 surfaces are then streamsurfaces 
describing the spanwise variation of the mean blade-to-blade 
flow. 

The methods which have been employed to solve the gov
erning flow equations on the SI and S2 surfaces include the 
Matrix method [1], [2], and [3] for example, and the 
Streamline Curvature Method (SLCM), [4] and [5]. The dif
ference between these methods is the form of the equations of 
motion and the approach used to obtain a numerical solution. 
The Matrix method solves for the stream function in the 
region of interest while the SLCM determines the velocity field 
from the tangential momentum equation. A comparison of 
the two methods in obtaining solutions in the S2 surface is 
given in reference [6]. 

Contributed by the Fluids Engineering Division and presented at the Gas Tur
bine Conference, Anaheim, Calif., May 31-June 4, 1987, of THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by the Fluids 
Engineering Conference, June 26, 1987. 

Novak and Hearsey [5] describe a SLCM which provides a 
solution of the flow on the SI surface by solving for the veloci
ty field. This approach is similar to that employed by Wilkin
son [4] and formulates the momentum and energy equations in 
terms of the velocity gradients occurring in the flow. A com
parison of the predicted surface velocities with those measured 
in a NACA 65(18) 10 compressor cascade show that the SLCM 
is a very effective approach. 

In a previous paper, Abdallah and Henderson [10] used a 
second-order elliptic differential equation, in the meridional 
direction, to trace the streamlines throughout the flow field on 
the SI surface. The velocity field was then determined from 
the continuity equation by differentiation of the stream func
tion. This method is different from the traditional SLCM ap
proach in which a first-order velocity gradient equation is 
solved for the velocity field. The streamline positions are 
subsequently determined by integration of the equation of 
continuity. 

The analysis described in this paper introduces a new for
mulation of the governing momentum equation. A second-
order, elliptic, partial differential equation in the tangential 
and meridional directions is derived by combining the con
tinuity and momentum equations. This equation is referred to 
as the Unified Equation of Motion (UEM). The UEM is used 
to trace streamlines on the blade-to-blade surface. The veloci
ty field is then determined by differentiating the stream func
tion field, which satisfies the continuity equation. 
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"n 

Fig. 1 S1 stream surface and coordinates 

The advantage of the present approach is that the elliptic 
characteristic of the flow in the meridional and tangential 
directions is preserved by the governing equation. This 
method does not require under-relaxation of the iterative 
numerical solution of the governing equations. Body-fitted 
curvilinear coordinates from the streamlines and quasi-
orthogonals are naturally generated. 

Governing Equations 

The continuity and momentum equations are written in a 
coordinate system that rotates with angular velocity co. 

V-(pW)=Q 

Wx(VxV) = Vl-TvS 

V= W+6ixr 

(1) 

(2) 

(2a) 

Where V and W are the absolute and relative velocity vec
tors respectively, / is the relative stagnation rothalpy, S is the 
entropy, p is the density, f is the radius vector, and T is the 
temperature. 

Consider the orthogonal curvilinear coordinates (m,6,n) on 
the stream surface Si as shown in Fig. 1. The Si surface is 
assumed to be a body of revolution (variations in r are 
neglected in the ^-direction). The coordinates m and 6 lie on 
the surface while n is normal to the surface. The velocity vec
tor W has two non-zero components, the meridional velocity 
Wm and the tangential velocity Wg. The normal velocity com
ponent W„ = 0. 

The Continuity Equation. Equation (1) is written in the 
orthogonal coordinates m, d, and n as 

dm 
(pbrWJ-

36 
(pbWe)=0 (3) 

Equation (3) can be identically satisfied using the relations 

and 

W,= 

r — 
m 

tan 

1 

pbr 

(0) 

d>A 
de 

# 

pbr 36 

(4a) 

(4b) 

where /3 is the streamline angle relative to the meridional direc
tion and b is the streamtube thickness (normal distance be
tween two stream surfaces). 

The stream function \p in equations (4a) and (4b) is deter
mined from the mass flow in each streamtube at the upstream 
reference station. 

The Velocity Gradient Equation. The 0-component of the 
momentum equation (2) is 

-wm[ 3 3 

dm 3d (V«,)] = 
31 _ 3S 

1e ~W (5) 

Using equation (2a) and the relation 

Wm
1=W1~We

1 

and substituting in equation (5), one obtains: 

m r 3d 

dr2 _ 31 

W-
36 - [ (rWe)] 

-o>Wm 
as (6) 

dm 

The second term in equation (6) is rewritten as: 

3 We 3 d 
— ( r W , ) + — i — (rWe) = W-— (rWe) 
dm r 36 dl 

= W 
dm 

(rW6) (6a) 

N o m e n c l a t u r e 

A = blade spacing 
i,b,c,d = coefficients defined in 

equation (13) 
b - streamtube thickness (nor

mal distance between two 
stream surfaces 

/ = relative stagnation 
rothalpy 

m — distance along meridional 
stream surface 

m,6,n = orthogonal curvilinear 
coordinates, Fig. 1 

M = numberf of grid points in 
/^-direction 

ML = number of grid points 
upstream of the leading 
edge in w-direction 

MT = number of grid points 
upstream of the trailing 
edge in m-direction 

TV 
^ 0 
P 
r 

S 
Si,S2 

LCM 

SSL 
T 

V,W 

P 
o> 

A6 
6, 

= number of streamlines 
= total pressure 
= static pressure 
= radius of meridional 

stream surface 
= entropy 
= Wu's stream surfaces; S[." 

blade-to-blade S2: 
meridional 

= streamline curvature 
method 

= stagnation streamlines 
= temperature 
= absolute and relative 

velocity vectors, 
respectively 

= density 
= rotation speed 
= blade tangential thickness 
= suction surface relative 

tangential coordinate 

P = 

7 = 
f = 

* = 
Ar = 

Subscripts 
m,6,n = 

e = 
/ = 

P = 
s -— 

relative flow angle, 
(Tan^ (rdO/dm), Fig. 2) 
tan"1 (dr/dz), Fig. 1 
transformed meridional 
coordinate = \dm/r 
stream function 
radial thickness increment 
between two meridional 
stream surfaces 

refer to components in 
m , 6 and n directions 
respectively 
refer to exit conditions 
refer to inlet conditions 
refer to pressure surface 
refer to suction surface 
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where d/dl is the derivative along a streamline (I). Using the 
above identity, equation (6) takes the form 

dW d dr2 dl dS 
W Wm —— (rWe)-uWm —— = T .(7) 

dd '"dm " "' dm 36 86 

Since W0 = Wmrdd/dm, then equation (5) becomes 

(fe d , „. dd W dW 
r2W,„ 

dm2 dm 

dr2 

ir2Wm) 
dm W 

dS 

dd 

dm \de do / / ' 
(8) 

Equation (8) is an elliptic second-order differential equation 
in terms of 6(m) which is known as the velocity gradient 
equation. 

The ellipticity of the flow field in the meridional direction, 
m, is explicitly modeled in equation (8). However, the elliptici
ty in the tangential direction, 6, (the first term in the right-
hand side of equation (8)) lags by one iteration because the 
relative velocity, W, is computed at the previous iteration. In 
the present study the term 

W dW 

Wm dd 

in equation (8) is expressed in terms of the stream function, i/<. 
The dependent and independent variables \p and 6 are ex
changed in order to express the ellipticity in the tangential 
direction explicitly. This term is rewritten as 

W dW 1 1 d V . „ , sin((3) 

W d6 cos2(/3) pbr dd2 -+Wm cos3 ((3) dd 
(9) 

Using the chain rule [13] and noting that \j/ is constant along 
each streamline, one obtains: 

bH 
V dd ) 

d2e 
dd2 V 36 J d,p2 

Using equations (9a) and (4a), equation (9) is rewritten as 

W dW 1 , d26 

(9a) 

W 30 cos2 ((3) 
(pbr)2Wm 9^2 

+ Wm 
sin(/3) dp 

cos3(/3) dd 
(9b) 

Substituting the above relation in equation (8), one obtains: 

d 

dm 

where 

a=Wm 

\ m dm) \cos(B)J 

sin(/3) dff 

cos3(/3) ~W 

cos(/3). 

dr2 

Wm 

dm 

d26 

df2 

-T-

= tr 

ds^ 

(10) 

\dd 36/1 m 

(10«) 

Equation (10) is a second-order, elliptic, partial differential 
equation in both the meridional and tangential directions. 
This unified equation of motion is the result of combining the 
continuity equation (3) and the momentum equation (5). 
Boundary conditions are specified along all the solution do
main boundaries since equation (10) is elliptic. 

Boundary Conditions. Referring to Fig. 2, the following 
boundary conditions are used 

(1) At the blade suction surface (\p = 0) 

6 = 6S (11a) 

(2) At the blade pressure surface (^=1) 

6 = 6p (Ub) 

The upstream and downstream stagnation streamlines are 

UPSTREAM SSL 

1=1 DOWNSTREAM SSL 

\rv-> 
1=1 

Fig. 2 Blade-to-blade geometry 

determined from the solution of equation (10) and the periodic 
condition 

6P = 6,+A (lie) 

where 6P, 6S, and A refer to the pressure surface, the suction 
surface, and the blade spacing in the ^-direction, respectively. 

(3) Far-Upstream (m = 0) 

dd 
- = tan (ft) (lid) dm 

(4) Far-Downstream (m = me) 

dd 

dm 
= tan (|3e) (lie) 

Where /3,- and (3e are the relative flow inlet and exit angles 
respectively, Fig. 2. 

In case the flow exit angle /3e is not known, an iterative pro
cedure is adopted to satisfy a Kutta condition. We start by 
estimating the exit angle /3C and solve for the flow field. An in
crement A/3 is then added to the exit angle and the flow field is 
recalculated. The process is repeated until the magnitudes of 
the velocity at the cutoff points [4] of the blade are equal. This 
leads to the unique determination of the flow exit angle. 

Numerical Solutions 

Numerical solutions for the governing equations (4) and 
(10) with the boundary conditions equation (11) are obtained 
using the finite-difference method. Finite difference equations 
are derived using central difference approximations for the 
first and second order derivatives in equations (4) and (10). 

Finite-Difference Equations for Equation (4) 

AjAj^Aj + Aj+Jpbjrj 

We(j) = Wm(j)t<m((3j) 

where 

*J = 0J-0J-I 

Aj+l=6J+l-6j_i 

2<j<N-\ 

(12a) 

(126) 

(12c) 

(\2d) 

(\2e) 

At the solid boundaries, / = 1 andy^A^, second-order, one
sided formulas are used to approximate equations (4a) and 
(4b). 

Finite-Difference Equations for Equation (10) 

\ad)i^j+ (a6)i+1J+ (a6)iJ+1 +(«*),,;_, -du=(a6)u(13) 

where 
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2(r2Wm)l 

' '"' (™;+i,y-™,~i,yH'";,y-"Vi,y) 

2(r2Wm)2 

• v + i . y {mi+lj-mi_ij)(.mi+lj-miJ) 

a 
2b i ,j 

'•'~1 Wu+i-hj-iMu-hj-i) ' 

2b, , 
au+i 

( h j+l-TpiJ-MiJ+l- "Pi, j ) 

"u 

hj 

dij 

2< i 

= a,: 

- ( • 

= ff> 

< M -

-i,y + fl/+i 
pbr 

:os(/3) 

1. 

-V 
y+fl,-

w 3 

y + a, i, y - 1 > 

(13«i) 

(136) 

(13c) 

(13d) 

(13<?) 

(13./) 

(13«) 

(13/0 

M is the number of grid points in the meridional direction. 
The subscripts 1 and 2 in the above equations refer to the grid 
locations (/—1/2) and (/+ 1/2), respectively. 

Equation (13) is solved numerically using the successive 
over-relaxation method. 

The iterative procedure adopted for solving the governing 
equations (6) to (10) is as follows: 

(1) An initial estimate is made of the position of the 
streamlines and the velocity field. The number and location of 
the streamlines at the inlet station are sepcified by the user. 
The mass flow in each streamtube is defined and consequently 
the distribution of the stream function \p (\p is constant on 
each streamline). The initial flow exit angle is taken as equal to 
the blade exit angle. 

(2) Equation (10) is solved for the location of the 
streamlines with the boundary conditions (11). 

(3) The velocity field is computed from equations (4a) and 
(46). 

(4) Steps (2) and (3) are repeated until convergence is 
achieved. 

(5) The flow exit angle is adjusted to satisfy the Kutta con
dition (5 adjustments in flow angle were typically required). 

Results and Discussion 
Numerical results are obtained by solving the unified equa

tion of motion using the successive over-relaxation technique. 
The over-relaxation factor was varied between 1.0 and 1.2. 
Under-relaxation parameters were not required for any of the 
cases considered. All cases computed here required approx
imately 20 CPU minutes on a VAX 11/780 computer. 

Initially, solutions were obtained for the Sawyer stator [9] 
using a uniform distribution of streamlines. The number of 
streamlines used varied between 3 and 51. It was found by 
numerical experimentation that by using streamlines that were 
closely spaced near the blade surfaces, a smaller number of 
streamlines could be used to obtain accurate results. 
Specifically, eleven streamlines, distributed non-uniformly, 
see Figs. 7 and 9, provided the same results as twenty one 
uniformly distributed streamlines. By using eleven 
streamlines, instead of twenty one, the computation time was 
reduced by approximately a factor of two. 

A major consideration for determining the spacing of the 
meridional calculation stations is the stagger angle of the blade 
row. The higher the stagger angle becomes, the more difficult 
it is to resolve the leading edge well. Therefore, for large stag
ger angles, a nonuniform spacing of the calculation stations 
was specified with the closest spacing occurring at the leading 
edge. At low stagger angles, a more uniform spacing of the 
calculation stations resolved the leading edge well. 

COMPUTATION STATIONS 

CALCULATED STREAMLINES 

REDUCED MERIDIONAL DISTANCE, C 

Fig. 3 Computation stations and streamlines 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4. 

SUCTION SURFACE 

PRESENT RESULTS 
Ref. [ 4 ] 

L.E. T.E. 

0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 
REDUCED MERIDIONAL DISTANCE, { 

Fig. 4 Blade surface velocity distribution 

Several cascades were analyzed, for the incompressible case, 
in order to verify the method. The numerical results were com
pared with experimental data and with results obtained using 
other numerical methods. The effects of rotation, stream sheet 
thickness and radius change were investigated for the Wilkin
son [4] stator and rotor having the same geometry. The first 
case was the stator in which the effects of radius change and 
stream sheet thickness variations were investigated. The se
cond case was the rotor which had the additional effect of 
rotation included. The effects of stagger were investigated 
with the present analysis and with an independent analysis 
which used the matrix method [11] with a C-grid. Two blades 
were analyzed, one having a high stagger angle and one with a 
low stagger angle. The first case was the Axial Flow Research 
Fan (AFRF) rotor [8] which was constant stream sheet 
thickness and radius. The second case was the Sawyer stator 
[9] which also had constant stream sheet thickness and radius. 

The computation stations and calculated streamlines for the 
Wilkinson stator are shown in Fig. 3. The axial stations are 
specified while the streamlines are computed. The blade 
geometry given by Wilkinson [4] did not define the leading 
edge well. The calculated relative velocity ratio (W/We) 
distribution is shown in Fig. 4 along with the numerical results 
from reference [4], which uses the traditional formulation of 
the streamline curvature method. 

The computation stations and calculated relative 
streamlines for the Wilkinson rotor [4] are shown in Fig. 5. 
The blade is identical to the previous,stator case. The relative 
inlet flow angle is the same as for the stator. These streamlines 
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COMPUTATION STATIONS 

REDUCED MERIDIONAL DISTANCE, C 

Fig. 5 Computation stations and streamlines 
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Fig. 6 Blade surface velocity distribution 

0.28 

COMPUTATION 
STATIONS 

MERIDIONAL DISTANCE, m 
Fig. 7 Computation stations and streamlines 

compare well with Wilkinson's calculated streamline. The 
velocity ratio distribution for the rotor is shown in Fig. 6, 
along with the results from reference [4]. 

The computation stations and calculated relative 
streamlines for the highly staggered AFRF rotor [8] are shown 
in Fig. 7. These results are obtained by combining the present 
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Fig. 8 Blade surface pressure distribution 
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Fig. 9 Computation stations and streamlines 
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Fig. 10 Blade surface pressure distribution 

method with a meridional solution obtained using the method 
of reference [3]. The leading edge is not resolved well due to 
the high stagger angle. The calculated pressure distribution is 
shown in Fig. 8. Also shown are experimental data [8] and the 
results of a numerical method which solves the stream func
tion equation in rectilinear coordinates. The stream function 
solver uses a C-grid which provides better resolution of the 
leading edge than the present method. This is an especially im-
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portant consideration when highly staggered blades are being 
analyzed. 

The computation stations and calculated streamlines for the 
Sawyer stator [9] are shown in Fig. 9. For low stagger angles, 
the leading edge pressure distribution is resolved well in the 
present analysis. The calculated pressure distributions are 
presented in Fig. 10. Also shown are the experimental results 
[9] and the numerical results of the stream function solver. 
The results from both analyses agree well with the experimen
tal data, with the exception of the last quarter chord. This is 
due to separated flow in this region. Both methods predict a 
spike on the pressure surface. 

Conclusions 
A simple approach is developed for the solution of inviscid 

blade-to-blade flow in turbomachines. The method is applied 
for the solution of blade-to-blade flow in both rotating and 
non-rotating passages. The computed results show that the 
method is stable and does not require any under-relaxation 
parameters. The present method is similar to the classical 
SLCM in that both methods do not require the generation of a 
computational grid. It is different from the classical SLCM in 
two respects. First, the streamline positions are determined 
from the momentum equation (UEM) and the velocity field is 
computed from the continuity equation. The continuity equa
tion here is identically satisfied by using a stream function. 
The use of the momentum equation to trace the streamline 
models the ellipticity of the flow field in the tangential and 
meridional directions explicitly. Second, the present method 
does not require curve-fitting or under-relaxation that is com
monly used in the SLCM. 

The most significant problem with the present method is the 
resolution of the blade leading edge when the cascade stagger 
angle is large. One approach to eliminating this problem 
would be to rotate the blade coordinates to reduce the stagger 
angle. Another method of eliminating this problem would be 
to use an embedded C-grid in the leading edge region [12]. 

At the present time, blade-to-blade lossses have not been in
corporated into any of the results presented here. However, a 
loss model is planned to be incorporated to account for losses 

in both the meridional and tangential directions by modifying 
the total pressure term in the right hand side of equation (10). 
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Mean Flow and Turbulence 
Measurements of Annular Swirling 
Flows 
This paper presents the results of a detailed experimental investigation of swirling 
flows in a cylindrical annulus. Flows having nominal swirl angles ofO, 15, 30, and 45 
degrees were measured. Mean velocity components, total and static pressures, wall 
shear and Reynolds stresses were measured. Mixing length and eddy viscosity 
distributions were deduced from the data. The majority of the flow field 
measurements were made with single-sensor hot-wire anemometer probes; six in
dependent readings, each with a different sensor orientation, were made at each 
point. Consistency checks were applied wherever possible and indicate that the data 
are of high quality. 

1 Introduction 

Swirling flows occur in many devices including tur-
bomachinery, cyclone separators, and combustion equipment 
(Gupta et al., 1984). Swirling flows are physically complex: 
they are three-dimensional with strongly curved streamlines 
and their behaviour, especially near solid surfaces, is therefore 
substantially different from that in nonswirling flows. This 
paper reports an experimental investigation of several incom
pressible swirling flows in an annular duct having constant in
ner and outer radii, r, and r0, respectively. Current methods 
are unable to satisfactorily predict even this relatively simple 
class of swirling flows (Yamamoto and Millar, 1979; Reddy et 
al., 1987); the difficulty of course lies in turbulence modelling. 

Experimental data, including turbulence measurements, are 
needed to aid in development of improved turbulence models. 
The literature contains only mean flow data for swirling flow 
in annuli (Yeh, 1958; Scott and Rask, 1973; Scott and Bartelt, 
1976). The present investigation included comprehensive 
measurements of Reynolds stresses in four flows, having 
nominal swirl angles of 0, 15, 30, and 45 degrees; initial swirl 
numbers, SN, were 0, 0.23, 0.47, and 0.87. The radii /•, and r0 
had values of 0.127 and 0.20m, respectively,_and the Reynolds 
number based on mean axial velocity, U, and hydraulic 
diameter was 3.1 x 105. U was about 32m/s. The data are of 
high quality and the purpose of this paper is to make them 
available for guidance of turbulence modelling and for valida
tion of calculation methods. The experimental methods are 
described and selected data are presented, with emphasis on 
the 45 degree swirl flow, the most difficult to predict. Com
plete data for all four flows are presented in the thesis of 
Yowakim (1985). 

Contributed by the Fluids Engineering Division for publication in the JOUR
NAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering 
Division October 10, 1987. 

2 Description of Experiments 

2.1 Apparatus. Figure 1 shows a schematic of the swirl tun
nel used to produce the measured flows. Air from a 2-stage ax
ial blower passed through a honeycomb into a settling 
chamber. The settling chamber was fitted with three screens, 
the first one graded, to produce uniform stagnation pressure 
in the flow entering the contraction leading into the annular 
working section. 

A row of inlet guide vanes (IGV's) at the start of the work
ing section was used to impart swirl to the flow. There were 26 
vanes, each having a constant chord of 62 mm and 5.6 mm 
maximum camber. The vane angle was adjustable to give the 
desired swirl angle; the vanes were removed to obtain the non-
swirling flow. The IGV's were hollow, with a slot in the trail
ing edge so that air could be ejected to minimize the momen
tum defect in the wakes; unfortunately the blowing-air supply 
was insufficient to eliminate the momentum defect and 
substantial wakes remained. These decayed quite rapidly with 
downstream distance and no total-pressure defects were 
detected at the first measurement station, x/Dh = 1.67. 

The working section ended with a row of straightening 
vanes so that the flow was discharged with negligible swirl. 
This avoided mismatch of radial pressure gradient at the an
nulus exit. The straightening vanes were 1.8m downstream of 
the IGV's, giving a test section length of 12.3 hydraulic 
diameters. Values of radii and Reynolds number are stated in 
the Introduction. The test section was made of mild steel; 
working surfaces were machined to a smooth finish and 
segments were accurately aligned so that inner and outer an
nulus walls were concentric and there were no significant 
discontinuities at joints. The inner wall was supported by four 
streamlined struts about 0.5 hydraulic diameters upstream of 
the IGV's and by the straightening vanes. There were no struts 
or other obstructions between the IGV's and straightening 
vanes. The test section was fitted with static pressure taps in 
the outer and inner walls and five axially aligned ports at 
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Fig. 1 Schematic of swirl tunnel (not exactly to scale) 

which instrumentation could be traversed radially across the 
flow. Only one port was used at any given time, other ports 
being smoothly sealed. 

Instrumentation consisted of a 3-hole cobra probe, a single 
channel of constant-temperature hot-wire anemometry 
(TSI-1053A), single-sensor hot wire probes and Rosemount 
Model 831A3 pressure transducers. The transducer sensitivity 
was about 0.12mm of water per mV of output voltage. The 
cobra probe used tubes of 0.44mm ID, 0.73mm OD, the side 
tubes being chamfered at 60°. The mouth of the central tube 
was located on the axis of the 3.2mm diameter probe stem so 
that the probe could be rotated about this axis without chang
ing the location of the mouth. DISA single-sensor normal (90 
deg) and slant (45 deg) hot wire probes, models 55P11 and 
55P12, respectively, were used. Sensors were tungsten wires, 
5/xiri diameter and 1.25 mm long. Support prongs and probe 
holders were straight. 

The cobra and hot wire probes were traversed radially at 
each of the five instrumentation ports using a manual travers
ing gear. Probe stems or holders were radial with respect to the 
annular duct and the traverse gear allowed rotation about this 
radial axis. Radial position, absolute angular orientation and 
changes in angular orientation (yaw) of the probes could be 
determined within 0.03 mm, ±1 deg and ±0.1 deg, 
respectively. 

A Hewlett-Packard 3054A data acquisition and control 
system was used to acquire and process the pressure and hot
wire anemometer data. The system comprised a HP-85A com
puter, a 3497A acquisition/control unit and a 3456A digital 
voltmeter. The latter had a nominal sensitivity of l^V. RMS 

N o m e n c l a t u r e 

Dh = hydraulic diameter, 2(r0 - /•,•) 
h, k = probe yaw and pitch sensitivity factors; 

see equation (1) 
K = von Karman constant 

/ = mixing length; see equation (5) 
p = static pressure 

pa = ambient pressure 
p, = total pressure 
Q = mean resultant velocity 
r = radius from axis of annular duct 

SN = swirl number; SN 

= V" UWi^dr/V" r0lPrdr 
J 77 Jr,-

U = mean axial velocity, the radial average 
of U 

Ub, t/eff, U„, U, = components of sensor cooling velocity; 
see equation (1) 

U, V, W = axial ix), radial (r) and tangential (0) 
components of mean velocity 

u, v, w = axial, radial, and tangential com
ponents of turbulent fluctuating 
velocity 

Table 1 Azimuth angles for slant and normal hot wire probes 
with different swirl angles 

Nominal swirl 
angle 

(degrees) 

45 
30 
15 
0 

Slant probes 
(degrees) 

0, 45, 90 
0, 45, 90 
0, 45, 90 
0, 45, 90 

Normal probes 
(degrees) 

- 4 5 , 0,90 
- 4 5 , 0, 90 
- 4 5 , 4 5 , 90 
- 4 5 , 45, 90 

voltages were measured using a true RMS voltmeter set at a 3 s 
integration time constant. 

2.2 Experimental Methods. The cobra probe was used only 
to measure the radial distribution of total pressure and as a 
Preston tube at the inner wall of the annular duct. At each 
measurement point the probe was nulled by yawing it until 
both side tubes gave the same pressure reading. Calibration 
showed that the central tube gave the correct total pressure 
when aligned within 5° of the resultant velocity direction in 
uniform flow. No displacement corrections were applied; 
available corrections were not expected to be valid because the 
mouth of this particular probe was very close to the stem 
(within 3 mm). 

When resting against the inner wall, the centre of the cobra 
probe's mouth was 0.37 mm above the wall, corresponding to 
y+ = 7 0 . Previous work by Rajaratnam and Muralidhar 
(1968) and Prahlad (1972) indicates that under such conditions 
a nulled yaw probe can be used to determine the resultant wall 
shear stress and its direction. The Preston-tube calibration of 
Head and Vasanta Ram (1971) was used. 

At each measurement point in the flow, six separate 
readings of mean and RMS anemometer output voltage were 
taken, three with the normal wire probe and three with the 
slant wire probe. The probes were rotated about their stems to 
a different azimuth angle, \p, for each of the three readings. 
Mean velocity and Reynolds stress components were deduced 
from these data as outlined below. Azimuth angles were 
selected as in Table 1 to minimize wake interference effects 
from the sensor-support prongs. 

For the hot wire probes, the instantaneous effective cooling 
velocity was assumed to follow the relationship suggested by 
Jorgenson (1971): 

x = axial distance from inlet guide vanes 
y = distance from wall 
a = complementary angle of sensor to pro

be stem; see Fig. 2 
6 = tangential coordinate 
v = kinematic molecular or eddy viscosity; 

see equation (4) 
p = density 
T = shear stress 
4> = sensor azimuth angle; see Fig. 2 

Subscripts and Superscripts 
/ = inner wall 

lam = laminar 
o = outer wall 
w = wall 

rx, r8 = axial and tangential components of 
Reynolds shear stress, eddy viscosity or 
mixing length 

x, 6 = axial and tangential components of 
wall shear stress 

= time-averaged (except for U and Q) 
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U^ = U2 + k2U2 + h2Ub
2 (1) 

U„, Ut, and Ub are, respectively, the velocity components nor
mal to the sensor in the plane of the prongs, tangential to the 
sensor and normal to the sensor and the prongs (see Fig. 2). 
The relationship between anemometer bridge output voltage 
and C/eff was found by calibrating the probes in the potential 
core of a free jet, with the probes oriented such that U, = Ub 

= 0. This relationship is highly nonlinear and it was fitted 
with a fourth-order polynomial. This polynomial relationship 
was used to calculate a linearized output voltage for any given 
bridge DC output. Multiplication of bridge RMS outputs by 
the local slope of the polynomial relation gave corresponding 
"linearized" RMS voltages. This procedure is equivalent to 
that implemented in hardware form by the TSI Model 1052 
Finearizer (TSI, 1975) but with the availability of a computer 
data acquisition system the present method was judged to be 
more accurate and reliable. Checks showed that it gave the 
same results as when the hardware linearizer was used. The 
yaw and pitch sensitivity factors, k and h, were determined by 
separate calibration steps, using a procedure similar to that 
suggested by Bruun and Tropea (1980). For k, two separate 
probe orientations in the calibration flow are used such that 
Ub = 0 and U, ^ 0. Given equation (1) and the other calibra
tion data, k can then be calculated, h is found similarly, using 
two orientations for which U, = 0, Ub \ 0. Orientations 
representative of those prevailing during the flow 
measurements were used for determining k and h. 

The velocity components of equation (1) can be re-expressed 
in terms of the axial, radial and tangential velocity com
ponents, (U + u), (V + v) and (W + w) in the annulus. 
Together with the calibration information, this yields a rela
tionship between instantaneous anemometer output voltage 
and velocity components. Assuming low turbulence intensity 
(maximum of 14 percent in the present flows), this relation
ship can be expanded and split into two equations, one be
tween linearized DC anemometer voltage and the mean veloc
ity components, U, V, and W and the other between linear
ized RMS voltage and the turbulence parameters u2, v2, w2, 
uv, uw, and vw. Of course these equations also contain the 
sensor orientation angles a and i/- (see Fig. 2). a was 0 and 45 
deg for the normal and slant-wire probes, respectively (these 
values were checked and found accurate within 0.2 degrees for 
all probes). As mentioned, a variety of values was used for 
azimuth angle \p (see Table 1). These equations can be written 

Fig. 2 Probe-fixed and annulus-fixed coordinate systems and velocity 
components 

for each of the six DC and RMS readings made at each 
measurement point and solved simultaneously for the flow 
parameters. The system would be over-defined for the mean 
velocity components and the mean equations were only writ
ten and solved for the three readings made with the slant wire 
probes. The slant wire probes were judged to have the best 
sensitivity for this purpose. 

The above method of measuring mean flow and turbulence 
parameters is similar to the rotating probe method used by 
other investigators, for example Bissonette and Mellor (1974) 
and So and Mellor (1973). Bruun (1977) suggested that all six 
readings at each point could be taken with the same slant wire 
probes. Acrivlellis (1978), as modified by Bartenwerfer (1979), 
suggested a maximum of five measurements with a slant probe 
and the sixth with a normal probe. In the present work, at
tempts to take five readings with a single probe were unsuc
cessful; the resulting equations lacked linear independence. 
The procedure of three readings with each probe worked best. 
It should also be noted that Comte-Bellot et al. (1971) found 
that orienting hot wire probes normal to the flow was not 
markedly inferior to aligning them with the stream direction. 

Hot wire probes were recalibrated about every three hours. 

3 Results and Discussion 

3.1 Consistency Checks on Data. A number of checks for 
axisymmetry and consistency were applied to the data. Such 
checks included: (a) mean axial velocity, U, constant within 
±0.7 percent; (b) outer wall static pressure near start of an
nulus circumferentially uniform within ±1.5 percent of 0.5 
pU2; (c) dynamic pressure at mid-radius circumferentially 
uniform within ± 3 percent at all stations; (d) axial and 
angular momentum between stations 1 and 5 conserved within 
±1.7 percent, or better, of the initial momentum or angular 
momentum, (e) comparison of static pressures measured by 
inner-wall taps with those determined by integration of the 
radial momentum equation from the outer wall; (/) com
parison of total pressures measured with the 3-hole probe with 
those computed from the static pressures and the mean veloci
ty and normal Reynolds stress data; (g) comparisons of wall 
shear stresses measured by Preston tube with those determined 
from Clauser plots and by extrapolation of the Reynolds shear 
stresses measured within the flow. The comparisons of (e), (/), 
and (g) were always very satisfactory; examples can be seen in 
the figures which present the experimental results. 

3.2 Error Estimates. Errors can arise from effects of veloci
ty gradients over the slant wire probes, neglect of higher order 
turbulence terms in the data reduction equations, imperfect 
calibration and linearization, position and orientation errors, 
and sensitivity and repeatability limitations. A detailed error 
analysis is given by Yowakim (1985). The maximum error on 
the mean velocity components U and W is estimated at 4 per
cent and is mainly due to neglect of turbulence terms, calibra
tion errors and repeatability limitations. The radial velocity V 
is very small and estimated errors on it were over 100 percent; 
consequently no data for Fare presented and it was set to zero 
in the data reduction calculations. The maximum error is 
estimated at 15 percent on the Reynolds stresses uv, vw, u2, 
and w2 and at 20 percent on uw and v2. As outlined, the 
Reynolds stresses are obtained by simultaneous solution of six 
equations representing six separate readings; the errors arise 
mainly from sensitivity and repeatability limitations. 

The quality of the data is perhaps best indicated by the small 
scatter seen in the figures and by the very good agreement be
tween results obtained by different techniques. Uncertainty 
estimates are summarized in Table 2. 

3.3 Experimental Results. Complete data for all four flows 
are presented by Yowakim (1985). Only selected data are 
presented in this paper, with the emphasis on the flow with 
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strongest swirl. Unless otherwise noted, the solid curves 
through the data are fitted by eye; they are intended simply to 
facilitate reading of the graphs. 

Figure 3 shows radial distributions of total pressure for the 
45 deg swirl flow. A substantial 'core' flow with uniform total 
pressure is evident at station 1. This core disappears somewhat 

Table 2 Uncertainty estimates 

Quantity Estimated uncertainty at 
20:1 odds 

radial position (/• — /•,•)/(/•„ — r-t) 
wall static pressures, (p—pa)/0.5 pU2 

total pressures (p,—pa)/0.5pU2 

mean velocity components, U,_W 
wall shear stress Txw,Tg„/0.5pU2 

Reynolds stresses uv, vw, 
Reynolds stresses uw, u2 

mixing lengths lrx, 1^ 
eddy viscosities vrx, v^ 

±0.0005 
±0.02 
±0.05 
±4 percent 
±0.0002 from Clauser 

plots 
±0.0003 from Preston 

tube 
±15 percent 
± 20 percent 
±10 percent 
±15 percent 

£7? 

0.4 0.6 0 
(r-r: IMr.-r:! 

upstream of station 3. The wall boundary layers thus thicken 
and merge quite rapidly. There is good agreement between 
directly measured total pressures and those calculated from 
the relation 

pl=p + Q.5p(U1+W2 + u2 + v2 + w2) (2) 

Figure 4 shows radial distributions of static pressure for the 
45 deg swirl flow. These were calculated by integration of the 
radial momentum equation, that is 

P=Pv 
-_ fo Wi + w2 

, - P ( V + j ; dr (3) 

At the inner wall the static pressure given by equation (3) is 
generally in excellent agreement with the directly measured 
values (see Fig. 4); this inspires confidence in the values at in
termediate radii. 

Figures 5(a) and (b) present radial distributions of the axial 
and swirl mean velocity components. Figure 6 presents results 
for the axial and tangential components of wall and Reynolds 
shear stresses. Both figures are for the 45 degree swirl flow. 
The wall shear stresses were determined using a Clauser plot
ting technique based on an extended form of the law-of-the-
wall, suitable for swirling flows (Yowakim, 1985; Kind et al., 
1988). These wall values are seen to be entirely consistent with 
the Reynolds shear stresses measured in the flow using the hot
wire anemometer. Preston-tube data are available at the inner 
wall and are in good agreement with the other results. The 

0.4 0.6 

( r - r , l / { r 0 - r , l 

Fig. 3 Radial distributions of total pressure for 45 degree swirl flow 
( 0 = 32.6 m/s) Fig. 4 Radial distributions of static pressure for 45 degree swirl flow 

02 0.4, 0.6 08 1.0 
l r - r j ) / l r 0 - r j ) 

{a) AXIAL VELOCITY 

0,0 0.2 

(b) TANGENTIAL VELOCITY 

0.4 0.6 
( r - r:) / ( r 0 - r:) 

Fig. 5 Radial distributions of axial and tangential mean velocity com
ponents in 45 degree swirl flow. Omax = 36.8, 36.0, 35.6, 35.5, 35.2 m/s; 
wmax = 37.8, 36.4, 34.7, 33.6, 33.1 m/s; 0 = 32.7, 32.6, 32.8, 32.6, 32.9 
m/s; at stations 1 to 5 respectively. 
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( r - r , ) / ( r 0 - r , ) 

34 06 08 

04 06 08 
( r - r ) / ( r - r , ) 

radial gradients of the measured shear stress distributions near 
the walls were also found to be in excellent agreement with 
those given by the axial and tangential momentum equations 
with convection terms neglected. 

Figure 7 presents data for the turbulent fluctuation 
velocities for the 45 degree swirl flow. 

Figures 8 to 11 present additional data for mean velocities, 
wall static pressures and wall shear stresses. The data are suffi
cient to enable predictive calculations. The shear stresses on 
the outer wall are seen to be generally higher than those on the 
inner wall for the swirling flows. This reflects the unstable and 
stable gradients of angular momentum near the outer and in
ner walls, respectively. Transverse curvature also has some in
fluence; the ratio of inner to outer wall shear stress for the 
non-swirling flow is in excellent agreement with the work of 
Pletcher and Malik (1979). 

For present purposes, eddy-viscosities and mixing lengths 
are defined by the relations suggested by Lilley and Chigier 
(1971): 

Fig. 6 Radial distributions of axial and tangential shear stress in 45 
degree swirl flow (wall values are from Clauser plots; Preston-tube 
values are also shown for inner wall) 

0.4 0.6 
(r - r-j I / ( r 0 - r , l 

Fig. 7 Radial distributions of turbulent fluctuation velocities in 45 
degree swirl flow (Q = 45.5, 43.9,43.1 m/s at stations 1, 3, 5 respectively) 
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Fig. 9 Axial distributions of wall static pressures 

SWIRL 0° 15° 30° 
STATION 1 5 1 5 1 5 

U 31.2 31.6 32A 32.3 32.4 32.5 m/s 
Umax 33.1 35.2 34.1 35.9 35.1 35.8 m/s 
Wm™ - - 9.8 8.6 22.3 19.8 m/s 

0.6 

° STATION 1 
• STATION 5 

0.0 0.2 0.4 0.6 Of 

( r - r ; )/(r0-r,) 
lb) TANGENTIAL VELOCITY 

Fig. 8 Radial distributions of axial and tangential mean velocity com
ponents in 0, 15, and 30 degree swirl flows 
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OUTER INNER 
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Fig. 10 Axial distributions of axial component of wall shear stress 
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Fig. 12 Radial distributions of mixing lengths at station 5 
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Figure 12 presents data for the mixing lengths at the last 
measurement station. The mixing lengths are seen to be almost 
independent of the degree of swirl, especially near the inner 
wall, and to be approximately isotropic. Geometry, as 
represented by the ratio r0/rh appears to have more effect 
than swirl. The mixing lengths are seen to agree rather well 
with the relations 
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Fig. 14 Radial distributions of eddy viscosity ratio erx/p,f at station 5 

(6) data are presented in Figs. 13 and 14. The eddy viscosities ex
hibit more dependence on degree of swirl than the mixing 

suggested by the work of Galbraith et al. (1977). The extended lengths. They also exhibit some anisotropy (Fig. 14) but this is 
law of the wall is based on equation (6). Some eddy viscosity not pronounced. 
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4 Conclusions 

Detailed mean flow and turbulence measurements have 
been obtained for several swirling flows in a cylindrical an-
nulus. Consistency checks have been applied to the data 
wherever possible and the quality of the data appears to be 
very good. The data are considered suitable to guide develop
ment of and assess computational methods for this important 
class of three-dimensional flows. 
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Turbulence Measurements With 
Symmetrically Bent V-Shaped Hot-
Wires, Part 1: Principles of 
Operation 
A new anetnometry technique has been developed for turbulence measurements near 
the wall, where the conventional X-wire method is subject to large errors due to 
aerodynamic disturbances caused by the tips of wire supports. The technique pro
posed in this study is founded on the principle of convective heat transfer from a 
symmetrically bent V-shaped hot-wire, which can be supported just like a cantilever. 
The present paper describes the details of effective cooling velocities of a V-shaped 
hot-wire, together with the related comments on its aeroelastic deformation and 
vibration. 

Introduction 
The hot-wire anemometers have been and will likely con

tinue to be among the most versatile and widely used in
struments for obtaining quantitative information on turbulent 
flows. The anemometry technique, however, is not yet fully 
established, and vigorous efforts are still being devoted to 
deepen the understanding of hot-wire anemometer systems 
and/or to develop a new anemometry technique. The present 
state-of-the-art is given by Blackwelder [1], Perry [2], Finger-
son and Freymuth [3], and Smol'yakov and Tkachenko [4]. 

It is now well known that the structure of near-wall tur
bulence plays an important role in the dynamics of wall-
turbulent shear flows, and many of the attributes of wall-
turbulent flows can be ascribed to the coherent motions near 
the wall (e.g., see Kim, Kline and Reynolds [5], Willmarth and 
Bogar [6], and Hussain [7]). Studies by various visualization 
methods in shear layers and wall-bounded flows offer abun
dant qualitative knowledge of coherent structures. On the 
other hand, until recent years little quantitatively authentic in
formation has been available on the near-wall layer structure. 
Thus, an accumulation of quantitative information on the 
structure of near-wall turbulence is now evidently required. 

A lack of quantitative results of the flow structure close to 
the wall is mainly due to the great difficulties of accurate hot
wire measurements of the Reynolds stresses near the wall. 
Such experiments have usually been performed by using an X-
wire anemometry technique. However, when this technique is 
employed in a turbulent flow near the wall, the support system 
which comprises of prongs (i.e., support needles) and the 
probe body signficantly distorts the flow field and introduces 
serious errors into the measurements. In addition, the conven-

Present address: Chubu University, Department of Mechanical Engineering, 
Matsumoto-cho, Kasugai 487, Japan. 

Contributed by the Fluids Engineering Division for publication in the JOUR
NAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering 
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tional X-wire probe is kept somewhat away from the wall by 
its supports. Hence, for the study of near-wall turbulence, a 
development of a novel technique for measurements is of 
prime importance. 

The technique proposed in this study is based on the princi
ple of convective heat transfer from a symmetrically bent V-
shaped hot-wire. In our previous paper [8], the heat transfer 
characteristics of a bent hot-wire in an extremely narrow 'V 
shape were investigated. The recognized anomalous attributes 
of such hot-wires may be ascribed to the effects of 
aerodynamic and thermal wake disturbances caused by the 
hot-wire filaments composing the legs of the 'V shape. The 
present series of investigations are designed to obtain universal 
information on the V-shaped hot-wires with large vertex 
angles, which are free from undesirable wire interference, and 
to establish a new anemometry technique for turbulence 
measurement. In this paper the principles of operation of a 
single V-shaped hot-wire are given, together with some 
remarks on its aeroelastic behaviour. In our next report, the 
principles of turbulence measurements are to be described 
along with associated probe arrangements, and it will be 
shown that the proposed technique is highly effective for the 
measurement of turbulence in close proximity to the wall, 
where the conventional X-wire anemometry technique is either 
subject to large errors or at worst cannot be used. 

A Conventional Inclined Straight Hot-Wire 

The directional dependence of heat transfer characteristics 
of an inclined straight hot-wire can properly be expressed by 
the effective cooling velocity [1-3]. Several expressions for the 
effective cooling velocity Ue have been suggested [9-14]. 
Among others, the following functional form evolved by 
Hinze [9] is now widely used [1-3]: 
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U2 = U2 + k2U2 

U2{l~(l-k2)cos2y} (1) 

where U is the instantaneous fluid velocity, 7 is the angle be
tween U and the axis of the hot-wire, and U„ and U, are the 
components of the velocity vector normal and parallel to the 
hot-wire, respectively. For a given type of wire, the tangential 
sensitivity coefficient of hot-wire, k, is generally dependent 
upon the wire orientation and the fluid velocity. 

The relationship between the average heat transfer coeffi
cient of a hot-wire, h, and the effective cooling velocity is 
customarily expressed as: 

h=A+BU'> (2) 

with n, A, and B constants. 
The corresponding thermal equilibrium of a hot-wire 

operated in constant-temperature mode can be written as: 

•Kdh{T-Ta) = i2R (3) 

where T and Ta are the wire and the fluid temperatures, 
respectively, and R denotes the electric resistance of the wire 
per unit length. The temperature dependence of the wire 
resistance can adequately be expressed as: 

R=R0U+P(T-T0)) (4) 

With equation (4), rewriting equation (3) gives: 

h(R-Ra)=Ci2R (5) 

in which Ra denotes the wire resistance corresponding to an 
ambient fluid temperature Ta, and Cis a constant given by: 

C=(5R0/ird 

A V-Shape Hot-Wire 

A fine wire is symmetrically bent into a V-shape at an angle 
2a (an angle of vertex) and oriented at a certain angle to the 
flow, as shown in Fig. 1. The axis of symmetry of V-shaped 
wire is in the xy-plane and the velocity vector in the .*z-plane. 
Let </> be the angle between the Ax-plane and the plane in which 
the V-shaped wire is located, and \ji be the angle between the 
velocity vector and the x-axis. In what follows, 4> and \f/ are 
referred to as the pitch and the side-slip angles, respectively, 
and the subscripts 1 and 2 pertain to each side of the V-shaped 
wire. 

In case a V-shaped wire is operated as a constant 
temperature hot-wire, the overall resistance of the V-shaped 
wire is kept constant, so that: 

R{ + R2 = 2Rm = const. 

where Rm is the average resistance of the V-shaped hot-wire. 

Fig. 1 Orientation of a V-shaped hot-wire with respect to flow 

Following the thermal equilibrium for a conventional inclin
ed straight hot-wire, given by equation (5), the energy equa
tion for a V-shaped hot-wire can be written as: 

holl{Rm-Ra) = Ci2Rn (6) 

where hov is the "overall" heat transfer coefficient of the V-
shaped hot-wire, or conversely equation (6) may be regarded 
as the defining equation of hov. As is demonstrated in Appen
dix A, hm can be approximated with a high accuracy as: 

h0« = hm^(hl+h2)/2 (7) 

If the convective cooling from a V-shaped hot-wire obeys 
the law similar to that for a straight wire, the relation between 
the overall heat transfer coefficient hou and the overall effec
tive cooling velocity Ueov can be written as: 

hn=A+BU" (8) 

with n, A, and B constants (but may differ from those for 
straight hot-wires). 

The 'overall' effective cooling velocity Ueov is, as derived in 
Appendix B, nearly identical to the average effective cooling 
velocity of the V-shaped hot-wire, so that: 

where Uem= (Uel +Ue2)/2. 

•U„, (9) 

Effective Cooling Velocity of a V-Shaped Hot-Wire 

Using the coordinate system shown in Fig. 1, one of the 
angles 7 which a flow velocity vector U makes with the axis of 

N o m e n c l a t u r e 

d 
F 

h 

i 
k 

m 
Nu 

n 

= wire diameter 
= direction-sensitivity 

characteristic, equation (16) 
= convective heat transfer 

coefficient 
= current through wire 
= tangential sensitivity 

coefficient 
= resistive overheat ratio 
= Nusselt number 
= exponent of Reynolds number 

R 
Re 

T 
T 

u 
ue 

°t 

(velocity) in heat transfer 
correlations 
wire resistance per unit length 
Reynolds number 
wire temperature 
ambient temperature of fluid 
fluid velocity past wire 
effective cooling velocity of 
wire 
half of the vertex angle of V-
shaped wire 

7 = angle which velocity vector 
makes with wire axis 

X = thermal conductivity of fluid 
v = kinematic viscosity of fluid 
<j> = pitch angle of V-shaped wire 
x// = side-slip angle of V-shaped 

wire 

Subscripts 

a = conditions at ambient 
temperature Ta 

1,2 = each side of V-shaped wire 
m = mean value 
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the hot-wire (hereafter referred to as an angle of attack) is ex
pressed for each side of the wire as follows: 

COSY, = cosacos<j!>cosi/< + sinasini/' (10a) 

cos72 = cosacostfrcosip - sinctsin^ (10*) 

The effective cooling velocity for the V-shaped hot-wire can 
be written, from equations (1) and (10), as: 

Uem = £/({ 1 - (1 - £,2)cos2acos2iKcos(/> + tanatam//)2) v' 

+ j 1 - (1 - £ 2
2 ) C O S 2 Q ! C O S 2 ^ ( C O S < £ 

-canatam/-)2}*)/2 (11) 

Let COSY,,, be the average of cos7[ and COSY2, and we get: 

COSY,,, = (COS7! + cos7 2 ) / 2 = cosacos</)cosv!' (12) 

Under typical working conditions 0 = 30 deg, a =15 deg, 
and i^< 11.3 deg (which corresponds to tani/-= w/U<0.2, 
where w and Clare the fluctuating velocity component in the z-
direction and the time-averaged velocity in the x-direction, 
respectively), as described later, we can approximate equation 
(11) as: 

Uem - U[{ 1 - (1 - /c,2,)cos2acos2i/<(cos<£ + tanatani/-)2 j Vl 

+ (1 - (1 - k2„)cos2acos2^(cos</>- tanatani/-)2] Yl)/2 (13a) 

where k,„ denotes the value of k for 7 = 7,,,. 
The absolute error due to the approximation of Uem to 

equation (13a) remains less than 0.4 percent. The following 
provides a fairly good approximation to equation (13a): 

Uem = £/( 1 - (1 - /r2,)cos2acos2i/'(cos20 + tan2atan2i/')! Vl 

(136) 

And further approximation yields: 

Uem = C/{1 - (1 - fc2,)cos2acos2i/<cos2</>) Vl (13c) 

The resulting errors in Uem associated with the approximation 
of equation (13a) to equations (13Z?) and (13c) do not exceed 
0.57 and 0.90 percent, respectively. 

Heat Transfer Function 

The average heat transfer rate from the V-shaped hot-wire 
placed normal to the air flow, i.e., i/< = 0 deg and $ = 90 deg, is 
a function of both the fluid velocity and the vertex angle of the 
wire, as presented in Fig. 2, where Nu = /!0„e?/X and 
Re=Ud/v. The hot-wire tested was d=5fim diameter and 
2L = 1 mm length (effective total length), and the temperature 
loading of the hot-wire was Tf/Ta = 1.265 where Tf is the film 
temperature given by Tj-= (T„ + Tm)/2. The thermal conduc
tivity X and the kinematic viscosity v of the fluid were 
evaluated at Tf. 

As seen from Fig. 2, the relationship between Nusselt 
number Nu and Reynolds number Re can be written as: 

Nu = A+BR'J (14) 

with n,A, and B shown to be functions of vertex angle a. For 
a = 90 deg, which corresponds to a straight normal wire, equa
tion (14) becomes: 

Nu = 0.615+ 0.683Re° for0 .2<Re<6.8 (15) 

In the case of the conventional normal wire, various empirical 
heat transfer formulae have been proposed [1-3, 9, 15]. The 
correlation of Collis and Williams [16] is now considered to 
express well the heat transfer rate from a fine wire of very 
large aspect ratio, say 2L/d> 1000. However, the aspect ratio 
2L/d of hot-wires commonly used in anemometry practice 

90-0" 
49.5° 
1 9-0° 
15.3° 
10.1° 
7.5" 
2.3° 

0.3 1 Re 10 

Fig. 2 Heat transfer rate from a V-shaped hot-wire placed normal to 
flow (^ = 0 deg, 0 = 90 deg). Uncertainty in Nu is ±1.8 percent, in Re ±2.1 
percent at 20:1 odds. 

Fig. 3 Dependence of the exponent of Reynolds numbers in heat 
transfer correlations on the half vertex angle of a V-shaped hot-wire 

ranges from 150 to 300, and hence their effect on heat transfer 
characteristics becomes significant [15]. Equation (15) is 
established for wires of 2L/d=200, and is found to be in ex
cellent agreement with the relation obtained by Koch and 
Gartshore [17] for DISA miniature hot-wire probe 
(2L/d=230). It should be noted that equation (15) covers the 
fluid velocity range from 1 m/s to 30 m/s. 

From Fig. 2, it is found that the heat transfer coefficient of 
the V-shaped hot-wire for half vertex angle larger than 15 deg 
becomes a single function of fluid velocity regardless of the 
value of the vertex angle. This suggests that a symmetrically 
bent V-shaped hot-wire of a > 15 deg works in the same man
ner as a straight hot-wire. The exponent n in equation (14) for 
wires of a< 15 deg, however, changes with the vertex angle, as 
is evidenced in Fig. 3. This can be attributed to the anomalous 
effects of aerodynamic and thermal wake disturbances caused 
by the hot-wire filaments composing the adjacent legs of the 
' V shape. In turbulent flows, the instantaneous direction of 
the fluid velocity vector changes with time. Thus, in order to 
minimize any unexpected problems introduced by the wire in
terference effects, the half vertex angle of a V-shaped hot-wire 
should be made larger than 15 deg. (For practical applications, 
it is to be recommended that the limiting value of the vertex 
angle is determined by the calibration for a given type of wire.) 

Tangential Sensitivity Coefficient 

In a qualitative sense, the role of convective cooling by the 
tangential velocity component in heat transfer characteristics 
of inclined hot-wires is fairly well understood. Yet, the 
reported discrepancies in the measured values of the tangential 
sensitivity coefficient of inclined hot-wire, k, are far too great 
[10, 13, 14, 18, 19]. Although these results are helpful in the 
understanding of the problem, the lack of agreement is a 
source of concern. Further work is evidently still needed. In 
general, the value of k for inclined straight hot-wires depends 
upon the type of probe, the wire Reynolds number and the 
probe orientation with respect to the flow. Particularly the 
aerodynamic effects from both the support needles and the 
probe body significantly affect the readings [13, 20, 21]. In the 
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Fig. 4 Tangential sensitivity coefficient of a V-shaped hot-wire. 
A, y = 15.3 deg; B, 19.6 deg; C, 24.3 deg; D, 28.9 deg; E, 33.9 deg; F, 39.1 
deg; G, 43.5 deg; H, 48.0 deg; I, 53.4 deg; J, 57.9 deg; K, 62.5 deg; L, 67.1 
deg; M, 71.7 deg; N, 77.3 deg. 
Uncertainty intervals are at 20:1 odds. 

Fig. 5 Variation in k with angles of attack and fluid velocity 

case of the present V-shaped hot-wires, there are no upstream 
prongs disturbing the flow field, and hence the most crucial 
problem due to support interference can be evaded in 
evaluating the tangential sensitivity k. 

Typical values of k obtained with a V-shape hot-wire of 
a = 15.25 deg and L = 0.5 mm are shown in Fig. 4 as functions 
of fluid velocity U for various angles of attack y. In this case, 
the side-slip angle is kept at i/< = 0 deg. The variation in k with 
the angle of attack y is given in Fig. 5 for three different 
velocities. 

The tangential sensitivity is naturally expected to be depen
dent upon the fluid velocity and the angle of attack to the 
flow. As seen from Figs. 4 and 5, the value of k increases 
markedly with increasing y and changes little with fluid veloci
ty. As described later and in our next paper, turbulence 
measurements with inclined V-shaped hot-wires are usually 
done by placing wires at an angle of 30 deg < 7 < 5 0 deg. 
Within this range, the tangential sensitivity can be considered 
to be dependent primarily upon the angle of attack y and 
almost independent of the fluid velocity U at least for U> 6 
m/s. Thus, in evaluating effective cooling velocities from 
equation (13), it causes no practical problems to regard k as a 
single function of y. 

Directional Characteristics of V-Shaped Hot-Wires 

Since it is mainly the effective cooling velocity Uem that 
determines the directional dependence of heat transfer 
characteristics of V-shaped hot-wires, their directional 
characteristics can be represented as functions of the probe 
configuration (i.e., half of the vertex angle a) and the orienta
tion of the velocity vector with respect to the probe (i.e., pitch 
angle <j> and side-slip angle \f/). The tangential sensitivity k due 
to the flow parallel to the hot-wire depends, as described 
above, almost entirely upon the angle of attack y. Thus the ef
fective cooling has a functional form given as: 

Fig. 6 Direction-sensitivity characteristics 

Uem = U.F(<t>, +, a) (16) 

where 

F(cj>, \p, a)=[(l-(l-&I
2)cos2acos2i/<(cos</> + tanatani/')2 j Vl 

+ {l-(l-/t2
2)cos2acos2i/'(cos</)-tanatani/')2j' /2]/2 (17) 

The profiles of direction-sensitivity characteristic F and its 
derivative dF/d<j>, with k given in Fig. 5 assigned to kl and k2 

in equation (17), are presented as a function of 4> in Fig. 6 for 
1̂  = 0 deg, a= 15 deg, and 20 deg. For comparison, the cor
responding profiles for the conventional inclined straight hot
wire (i.e., a = 0 deg) are also shown by chain lines in the 
figure. It is seen that the value of F increases with an increase 
of pitch angle </>, and 3F/3</> reaches a maximum at about 
0 = 30 deg, although the maximum point is somewhat depen
dent upon the half vertex angle a. In the measurement of tur
bulence with inclined hot-wires, the value of F i s nothing but 
the sensitivity to stream wise velocity fluctuations, and dF/84> 
determines the prime sensitivity to normal velocity fluctua
tions. Accordingly, for V-shaped hot-wires with practically no 
probe interference effects (i.e., a > 1 5 deg), the best probe 
orientation to the flow is seen from Fig. 6 to be in the range of 
30 deg<$<45 deg, where both sensitivities become of the 
same order of magnitude. 

The Aeroelastic Behavior of V-Shaped Hot-Wires 

A typical configuration of a V-shaped hot-wire used in the 
investigation is shown in Fig. 7. A 5/j.m dia. 1 mm-long 
straight tungsten wire was symmetrically bent into a V-shape 
at an angle of 30.5 deg. To avoid any influence of 
aerodynamic disturbances caused by the wire supports, the 
diameter of the copper-plated ends was made smaller (20^m), 
and the length of each plated end fixed on to the tapered wire 
support was made sufficiently longer (2 mm). 

A V-shaped hot-wire can be supported just like a cantilever. 
Thus, some comments on the elastic deformation and vibra
tion of V-shaped wires due to the fluid drag appear to be 
useful for practical applications. The maximum wire deforma
tion occurs when the V-shaped wire is set in a flow in such a 
way that ^ = 0 deg and 0 = 90 deg. By the use of the beam 
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Fig. 7 Typical configuration of a V-shaped hot-wire

theory, it can be shown that the maximum wire deformation is
proportional to L4 and [j2, and inversely proportional to d 3

and the Young's modulus of elasticity. The computed max
imum deformation of a tungsten wire for d=5 ,urn, L=O.5
mm, and U = 20 mls is about 2.8 ,urn thus indicating a visually
unobservable, very small value. In fact, the deformation could
hardly be observed under a microscope. Moreover, no defor
mation of a V-shaped hot-wire was noticed after its repeated
uses.

The wire vibration, on the other hand, becomes a matter of
great concern when the V-shaped hot-wire is used in a high
speed flow. The natural frequencies of V-shaped wires are
usually much higher than the range of interest for most tur
bulence research_ However, it is advisable for a V-shaped hot
wire to be used in the absence of any wire vibration. It is the
authors' opinion that the best way to detect the wire vibration
is to measure a rough frequency spectrum with the wire in the
free stream by using a plug-in spectrum analyser which
displays the power spectrum on an oscilloscope screen. It
should be definitely stated here that no vibrations occurred at
all with the V-shaped hot-wire shown in Fig. 7 for U < 30 m/s.

Conclusions

The heat transfer characterisitics of a hot-wire bent into a
'V' shape, which is developed for reliable measurements of
near-wall turbulence, are investigated. The results can be sum
marized in the following conclusions:

1 The heat transfer coefficients of V-shaped hot-wires for
half vertex angles larger than 15 deg are found to become a
single function of effective cooling velocity regardless of the
value of the vertex angle: the convective cooling from a V
shaped hot-wire obeys the same law as that for a straight hot
wire.

2 The effective cooling of the V-shaped hot-wire has the
functional form given by equations (16) and (17).

3 The tangential sensitivity coefficient of the V-shaped
hot-wire is dependent mainly upon the angle of attack and
almost independent of the fluid velocity for U>6 m/s.

4 Prime sensitivities of the V-shaped hot-wire to fluc
tuating velocity components are dependent upon both the con
figuration of the wire and its orientation to the flow. A typical
dependence is demonstrated.

5 The aeroelastic deformation and vibration of the V
shaped hot-wire are examined, and it becomes evident ,that
both of them do not occur in an air flow of U < 30 mls.
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APPENDIX A

The energy equation for each side of the V-shaped hot-wire
can be written as:

h2(R 2-Ra) =CPR2

where R 1 +R 2 =2Rm =const. holds. Eliminating R j , R 2 , and
Ci2 from the above equations and equation (6) then yields:

hrRa + h2R a 2
hIRIIl-hov(Rm-Ra) h2RIIl-hav(RIIl-Ra)

The overall heat transfer coefficient, hov of the V-shaped hot
wire derived from the above equation becomes:

[ [
4(1 + lIm)h t h2 ] y, ]

hav =hm (1+1I2m) 1- 1- 2 2
(2+ 11m) hm

where m denotes the resistive overheat ratio defined by:

m=Rn/Ra-l

For m = 0.5 and h21hi = 0,9, we obtain hov = 0.9959hm. Thus,
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in ordinary situations, the approximation of hov ~ hm is quite Now, writing Uem = (UeX + Ue2)/2 and Ue2 = (1 + A)Uel, we get 
satisfactory. from the above equation and equation (8): 

U„u = [(U^ + WaVlV-

= t/£,1{l+A/2-A2(l~~«)/8 + A3(l-«)/16 + . . . . ] 

= C/CT„-C/el(A2(l-«)/8-A3(l-«)/16+ | 

For A=l/10 and « = 0.45, we obtain (Uem - Ueov)/UeS = 
6x 10~4, and hence the approximation of Ueov — Uem has no 
practical problems. 

A P P E N D I X B 

The relation between the heat transfer coefficient and the 
effective cooling velocity can be written for each side of the V-
shaped hot-wire as: 

/i, =A+BU"el,h2 =A+BU"e2 

Thus, we get: 

hov^hm=A+B(U"el + U"e2)/2 
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Turbulence Measurements With 
Symmetrically Bent W-Shaped Hot-
Wires. Part 2: Measuring Velocity 
Components and Turbulent Shear 
Stresses 
An analysis of the response of a V-shaped hot-wire to velocity component fluctua
tions is presented. A V-shaped hot-wire works in the same manner as a conventional 
inclined straight wire. The great differences are: the V-shaped wire is less sensitive to 
the w component of velocity; the V-shaped wire can be supported just like a can
tilever, and thus the wire may be brought closer to the wall until it touches the wall 
surface, whereas an inclined straight wire is kept away from the wall by the sup
ports, and a probe body distorts the flow field. 

Introduction 

In turbulence studies, two velocity components are often 
measured with an X-wire, while three components can be 
measured by adding a third wire [1]. There are, however, 
limitations that must be observed. As demonstrated by Tutu 
and Chevray [2], cross-wire or X-wire anemometry is found to 
be erroneous due to the rectification, which stems from the in
herent insensitivity of hot-wires to the direction of the instan
taneous velocity vector, and the effect of the w component of 
velocity, when employed in high intensity turbulence. The use 
of 3-wire probes can reduce these errors considerably [3], and 
hence the performance of triple hot-wire probes has been ac
tively studied and improved upon in the last five years (e.g., 
Acrivlellis [4], Frota [5], and Andreopoulos [6]). The primary 
practical limitations or drawbacks of triple hot-wire probes 
are imperfect spatial resolution and a high possibility of the 
existence of probe interference effects. To allow an essentially 
point measurement, it is necessary to construct hot-wire arrays 
as small as possible. On the other hand, to minimize any probe 
interference, a certain spacing between wires is needed [7]. A 
large probe should suffer from the effects of imperfect spatial 
resolution on turbulence measurements. As a matter of fact, it 
is not rare that misleading information is obtained on the flow 
structure [8-11]. 

More crucial is that measurements of components of the 
Reynolds stresses near the wall are very difficult when using a 
conventional X-wire probe because the probe is kept away 
from the wall by the supports, and a probe body significantly 
distorts the flow fields. In an earlier paper [12], it was reported 
that symmetrically bent V-shaped hot-wires have been 
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Matsumoto-cho, Kasugai 487, Japan. 
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developed to permit the aforementioned problems to be 
solved, and that the basic heat-transfer characteristics of V-
shaped wires obey the law similar to that for straight wires. 
The present paper deals with the measurements of the tur
bulent velocity components and the Reynolds shear stresses 
with V-shaped hot-wires. First, an analysis is given of the 
behavior of V-shaped hot-wires set in a fluctuating velocity 
field, which provides the principle of turbulence 
measurements. Secondly, the complete procedure for measur
ing velocity components with two V-shaped wires in an X ar
rangement is described. Finally, some results are given of 
measurements of Reynolds shear stress in the immediate 
vicinity of a wall. 

Basic Equations for the Instantaneous Effective Cool
ing Velocity 

The effective cooling velocity for the V-shaped hot-wire, as 
presented in our earlier paper [12], is given by the following 
equations 

U„ ••U-F (1) 

with 

F= {(1 -A^cos2?,)0 '5 + (1 -A2cos272)0.5 ) / 2 (2) 

In these equations, U is the instantaneous fluid velocity; 
Ki=l—kj(i= 1,2) where k denotes the tangential sensitivity 
coefficient introduced to account for the effect of heat 
transfer due to the flow parallel to the hot-wire; y is the instan
taneous angle between U and the axis of the hot-wire; the 
subscripts 1 and 2 pertain to each side of the V-shaped wire 
(sides no. I and no. II in Fig. 1). Consider a V-shaped hot-wire 
oriented at a fixed angle 4>a with respect to the mean velocity 
U,n in an x- or stream wise direction, as depicted in Fig. 1. Let 
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\c 

U D\ 

Um+u B 

Fig. 1 Coordinate system and velocity components with respect to the 
sensing element 

u, v, and w be the velocity component fluctuationsjn the x, y, 
z directionSj_respectively. Write AB=Um + u, BC=v, CD^ 
= w, and AD= U in Fig. 1, and let 4> be the angle that AC 
makes with the plane in which the V-shaped wire is located, 
and i/<, 6, and 5 be the angles CAD, CAB, and BAE, respec
tively. The so-called instantaneous pitch angle is </> and the in
stantaneous side-slip angle is \p. As shown in the previous 
paper [12], the direction-sensitivity characteristic F i n equa
tion (2) becomes a single function of a, </>, and \p except in very 
low velocity situations. The relationships between these angles 
can be given as: 

tan6=v/(U,„+\i) 

(3) 

(4) 

tan5 = w/(t/m + u) (5) 

tan^ = cos0tan<5 (6) 

By following the same procedure as in the previous paper 
[12], the instantaneous angle of attack y, which an instan
taneous flow velocity U makes with the axis of the hot-wire, 
can be expressed in terms of the half vertex angle of V-shaped 
hot-wire a, the pitch angle 4> and the side-slip angle \j/ so that: 

COSY,- = cosacos0o(l + tanc/>otan0 

± tanatan67cos#0)/(l + tan20 + tan2S)° 

where some modifications are made with equations (3)-(6), 
and plus and minus signs in the right hand side refer to /= 1 
and 2, respectively. Substituting equation (7) for equation (2) 
yields: 

[[ \-Ky 
1 + v*2 + w* 

-(1 + v*tan<t>0 + w*tana/cos0( 4 
A-K-, 

cos2acos2<in 

?2 (l + "*tan0o 
1 + V*2 + W*2 

- vf*tana/cos</>0)
2 /2 (8) 

where v* = v/(U,„ + u) and w* = w/(U„, + u). Thus, the instan
taneous effective cooling velocity in a fluctuating velocity field 
can be written as: 

U„ Uem/U,„ = [{(l + u')2 + v'2 + w' 

-Klcos2acos24i0(l + « ' +v'tan<f>0 + w'tana/cos<£0)2 j c 

+ {(l + u')2 + v'2 + w'2- ^2cos2acos2^0(l + u' 

+ y'tan0o - w'tana/cos0o)2 ]/2 (9) 

(7) 

where the velocity fluctuations are normalized in such a way 
that u' =u/Um, v' = v/Um and w' = w/Um. By solving equa
tion (9), with measured values Uem' for different sets of $0 , 
we obtain a mean velocity and velocity components. 

Effects of Velocity Component Fluctuations on the Ef
fective Cooling Velocity 

In order to transform equation (9) into a more convenient 
form, the effects of velocity component fluctuations « ' , v', 
and w' on the effective fluctuating cooling velocity should be 
examined independently. Define Ueo as the effective cooling 
velocity for u' = v' = w' = 0. Then equation (9) yields: 

U„' = Ueo/Um = (1 -#0cos2acos24>0)°-5 (10) 

where K0 = 1 - k\, and k0 is the tangential sensitivity coeffi
cient at the fixed angle of attack y0 given by: 

N o m e n c l a t u r e 

a, b, c = absolute values of 
^HO! SvO> a i 1 " C|VO 

F = direction-
sensitivity 
characteristic, 
equation (2) 

G = parameter defined 
in equation (16) 

K = deviation factor of 
V-shaped hot-wire, 
equation (2) 

k = tangential sensitivi
ty coefficient 

SBO> CWO = sensitivities of V-
shaped wire to 
velocity fluctua
tions u,v, and w2. 

u, v, w = velocity compo

nent fluctuations 
in x, y, and z 
directions 

U = instantaneous flow 
velocity 

Um = mean velocity 
yOT = instantaneous ef

fective cooling 
velocity 

Ueo = effective cooling 
velocity for the 
case u = v = w = 0 

AUem = variation in Uem 

with velocity com
ponent 
fluctuations 

^ em ^ e o 

(At/,) = AUem for inclined 
straight hot-wire 

x, y, z = coordinates, see 
Fig. 1 

a = half vertex angle 
of V-shaped wire 

7 = angle which veloci
ty vector makes 
with wire axis 

4> = instantaneous 
pitch angle 

i/< = instantaneous side
slip angle 

Superscript 

Subscripts 

= value normalized 
by Um 

0 = value for the case 
u=v=w-0 

1,2 = each side of V-
shaped wire 
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COSYO = cosacos^o 0.2 

If we let AUemu' be the t Variation in Uem' with u' 
variation in Uem' with u' for the case v' = w' =0 , then the 
following equation is obtained from equations (9) and (10): 

" ^ e m u ^ em ^eo 

= (l-Kcos2acos24>0)°-5u' 

= SU0W (11) 

where Suo is the sensitivity to streamwise velocity fluctuations 
u' given by: 

Suo = (1 - icTcos^cos2^)0-5 (12) 

The calculated values of AUemu' from equation (11) with the 
measurements of k reported in the earlier paper [12] are 
presented as a function of w'in Fig. 2 for a typical configura
tion of a V-shaped hot-wire (a = 15 deg and 4>0 = 35 deg). This 
probe configuration was found to provide the better result of 
measurements [12]. 

2 Variation in Uem' with v'. The variation in Uem' with 
v', denoted as AUemu' for u' = w' =0 is obtained in much the 
same way as the above, so that: 

AUemv' = Uem'-Ueo' = {(l + v'2 

-.Kcos2acos20o(l + y'tan<A0)
2 ]0-5 - Ueo' (13) 

Note that K(= \-k2} in equation (13) changes at the same 
time as v', since 

cosy = cosacos$0(l + l>'tan</>0)/(l + v ' 2 ) ° 5 

holds and k changes with an angle of attack 7 [12]. 
The relationship between AUemv' and v' is demonstrated in 
Fig. 2 for a = 15 deg and <t>0 = 35 deg. It is seen that AUemv' for 
v' of up to 0.2 can be represented by a linear variation in
dicated by the chain line in the figure so that: 

AUemv'=Svov' (14) 

where SVo is the prime sensitivity to normal velocity fluctua
tions v' given by: 

SV0 = (dAUemv'/dv')v,=a= -(G/2)cos2asin 2 </>0 (15) 

Here G is the unique function of 7 as: 

G(T)= [K-{dK/dy)coty/2}/{\ -Kcos2y)05 (16) 

The resulting errors due to the approximation of AUemu'to 
equation (14), Svov'/AUemv' -1, are generally dependent 
upon both a and </>0. The calculated errors for a = 15 deg are 
shown as a function of </>0 in Fig. 3. 

For the practical applications of V-shaped hot-wires, it is 
often of great convenience to allow the sensitivities Suo and Svo 

to become of the same order of magnitude. As seen in Fig. 3, 
the best probe orientation to the flow is in the range of 35 
deg < 0o < 45 deg for a = 15 deg. In Fig. 3, the corresponding 
sensitivities for a conventional inclined straight hot-wire (a = 0 
deg) are also presented for comparison by the broken lines. 

3 Variation in \}m' with w'. The variation in Ua„' with 
w', A Uemw', for u' = v' = 0 can be written from equations (9) 
and (10) as: 

AUemw' = Uem'-Ueo'=H(l + w'2 

-AT1cos2acos20o(l +w'tana/cos</>0)2]0-5 + [(l + w'2 

-tf2cos2acos2</>0(l - w'tana/cos0o)2!o-5]/2 (17) 

As illustrated in Fig. 4 for the case a = 15 deg, AUemw' changes 
almost linearly with w'2 in such a way that: 

-0.2 

V-shaped 
h o t - w i r e 

-0-] U,V 0.2 

Fig. 2 Variation in the effective cooling velocity with velocity compo
nent fluctuations u ' and V for « = 15 deg and <;>o = 35 deg 

Fig. 3 Variations in the sensitivities S u o , Svo, and Cwo with pitch angle 
0O, and the resulting errors due to the approximation of A ( J e m / to a 
linear variation with v' for a = 15 deg 

The differentiation of equation (17) with respect t o w ' 2 yields: 

Cwo = (dAUemw'/dw'2)w,=0={(l-Kcos2acos2<l>0)
0-5 

+ G(cos2acos20o - sin2a) + (dG/d7)70cot70sin2a ] /2 (19) 

The change of Cwo with 0O is shown in Fig. 3 for a = 15 deg, 
together with that for an inclined straight hot-wire. For or
dinary orientation to the flow, i.e., 0O > 25 deg, Cwo decreases 
as </>0 increases. The errors in AUemw' due to the approxima
tion with equation (18) are 0.1 percent and 1.3 percent for 
a= 15 deg, </>0 = 35 deg, according as w' =0.1 and w' =0.2. 

4 The Response Equation of a V-Shaped Hot-Wire to the 
Three Components of Velocity. From the foregoing con
sideration, the resulting response equation of a V-shaped hot
wire to velocity fluctuations can be expressed as: 

Uem' = Ueo'+SuoU' +SV0V'+CW 

A[/„, (18) 

(2°) 
for | y ' l < 0 . 2 a n d lw ' l<0 .2 . 
Equation (20) is valid for a conventional inclined straight hot
wire, although a set of coefficients Suo, Sv0, and Cwo takes dif
ferent values. This suggests that a V-shaped hot-wire works in 
the same manner as an inclined straight hot-wire. 

It should be noted here that the sensitivity Sm in equation 
(20), strictly speaking, holds true for v' fluctuations under 
u'=w'=0. However, the sensitivity, S„ = dAUem'/dv', for 
w' = 0 and u' =0.1 becomes larger only by 0.3 percent than 
the value of Sm. The same conclusions have proven true for 
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Table 1 Comparison of error-producing factors 

0.0 i 0-02 0-03 0.04 
Fig. 4 Variation in the effective cooling velocity with w' 

Un 

Fig. 5 Orientation of two V-shaped wires in an X arrangement with 
respect to flow 

both Suo and C„0. Accordingly, the use of equation (20) is 
satisfactory for the measurements of velocity components ex
cept in very high intensity turbulence. 

Values of Suo, Suo, and Cwo are of the same order of 
magnitude. Thus, the effective cooling velocity changes with 
u' and v' approximately to the same degree, while the in
fluences of w' on the effective cooling velocity are of order 
w'2 and hence much smaller than those of u' and v'. 

Comparison of V-Shaped and Straight Hot-Wires 

All of the attributes of conventional inclined straight hot
wires can be derived simply by putting a = 0 deg in the govern
ing equations for V-shaped hot-wires. The variation in the ef
fective cooling velocity for straight wires, AUe', with velocity 
component fluctuations, u', v', and w' can be written respec
tively as: 

(AU'e)u = (\-Kcos2<j>0)
0-5u', 

(AUe ')„ = [ 1 + v'2 -Kcos2<j>0(l +v'tan<j>0)
2 

(AUe')w = (l + w'2~Kcos2<j>0)
0-5-

•U„ 

•U„ 

Equations for sensitivities Suo, Svo, and Cwo yields: 

Suo = (l-Kcos2cfr0)
0S 

S„ o =- (G/2 ) s in2 0o 

C1V0 = j (1 - Kcos2cj>0)
0-5 + Gcos2</>0) /2 

In the above set, K and G are functions of 7 given by: 

COSY = cos</>0(l + v' tan0o)/(l + v'2 + w'2)05 

The variations in the effective cooling velocity for straight 
hot-wires in the typical case of 4>0 = 35 deg are compared with 
those for V-shaped hot-wires in Figs. 2 and 4. The correspon
ding comparison of sensitivities is made in Fig. 3. 

These results indicate that the sensitivities to u' and v' fluc
tuations, Suo and Sm, do not differ significantly between V-

3 5 ° 

4 5 ° 

c / a 

V-Shaped Hot-Wire 

1 . 0 5 

0 . 7 9 

S t r a igh t Hot-Wire 

1 . 4 5 

0 . 9 7 

becomes much smaller than that for straight hot-wires. The 
latter result is important, for this proves that V-shaped hot
wires are less sensitive to w' fluctuations. 

Measurement of Turbulent Quantities With Multiple 
Probe Arrays 

As in conventional X-wire or triple-wire anemometry, 
velocity components can be measured simultaneously by using 
probes containing more than one V-shaped hot-wire. The 
quality of velocity information obtainable, however, is dif
ferent from that of X-wire or triple hot-wire probes, since 
parameters Suo, Svo, and C„0 are different between newly 
developed and conventional types of hot-wires. 

Let's examine the array with two V-shaped wires in an X ar
rangement and measure the streamwise and the normal veloci
ty components, u' and v'. Consider two identical V-shaped 
hot-wires, I and II, inclined at an angle 4>0 and i r - 0 o with 
respect to the mean flow direction, as shown in Fig. 5. Define 
a, b, and c as the asbolute values of Suo, Svo, and Cwo, respec
tively. For each wire, equation (20) yields: 

U., •• UM' +au' +bv' +cw' 

UPl' = UM' +au' -bv' +cw': 

(21) 

(22) 

Rearranging these equations then gives the following expres
sions for u' and v': 

u' + (c/a)w'2 = (AUei' +AUe2')/(2a) (23) 

v'=(AUei'-AUe2')/(2b) (24) 

where AUel' = Uei'-U^' and AUe2' = Ue2' - UM'. 
As seen from equation (23) and (24), the dominant error-

producing factor in the measurement of u' and v' is w' fluc
tuations, represented by the additional term (c/a)w'2. This is 
also true in conventional X-wire anemometry, as discussed in 
[2, 3]. The values of c/a for V-shaped hot-wires, as given in 
Table 1 for the case a = 15 deg, are 38 percent and 23 percent 
smaller for 4>0 = 35 and 45 deg than those for conventional X-
wires, thus indicating the superiority of the present method 
over the conventional one. For instance, if w' = u ' / 2 in high 
intensity turbulence, then the error in u' for V-shaped hot
wires at 4>Q = 35 deg becomes about 5 percent for u' = 0.2. This 
error is 0.72 times as large as that produced in X-wires. 

To verify the effectiveness_of the present method, 
measurements of Reynolds stress uv near the wall were made 
in fully developed pipe flow for a Reynolds number (based on 
bulk velocity and pipe diameter) of 40,000. A hot-wire array 
used was one with two V-shaped wires in an X arrangement 
(X-probe), as shown in Fig. 6. Each wire of the X-probe was 
separately operated in constant-temperature mode and set at 
angles of ±45 deg to the flow. The spacing, lz, between the 
wire centers was 0.26 mm. Note that the probe was con
structed as small as was practicable in order to detect the small 
scale flow phenomena near the wall, i.e., /z = 0.26 mm = 9.8 
v/u* — 3ij, where v is the kinematic viscosity, u* is the friction 
velocity, and rj is the Kolmogorov microscale. 

From the theory of fully developed pipe flow, the Reynolds 
stress is given by: 

-~uv/u*2 = (\-y/r0)-v/u*2dU/dy (25) 

shaped and straight hot-wires, while Cwo for V-shaped wires where r0 is the pipe radius and v is the distance from the wall. 
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Fig. 6 Probe configuration (all dimensions in millimeters) 
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Fig. 7 Measurements of Reynolds stress near the wall 

The values of uv from equation (25), calculated by using 
measurements of u* and U [13, 14], are compared with the 

present direct measurements of uv in Fig. 7. It can be seen 
that the present values of uv are in almost complete agreement 
with those calculated from equation (25). The onset of the wall 
proximity effect was observed at a sensor-to-wall distance of 
about 0.07 mm or y+ — 3.3 (nearly touching the wall surface). 
It should be mentioned here that measurements of Reynolds 
stress in the near-wall region y+ <20 can hardly be performed 
by using the conventional X-wire. 

Conclusions 

The characteristics of symmetrically bent V-shaped hot
wires in a fluctuating velocity field are investigated, and a new 
method for the measurement of three components of velocity 
and turbulent shear stresses with these wires is presented. The 
technique described eliminates various errors due to 
aerodynamic disturbances caused by the wire supports and is 

shown to be highly effective for the measurement of tur
bulence in close proximity to the wall, where a conventional 
X-wire anemometry technique is either subject to large errors 
or at worst cannot be used. The results can be summarized in 
the following conclusions: 

1 Basically, a V-shaped hot-wire is found to work in the 
same manner as an inclined straight hot-wire, the effective 
cooling velocity varying linearly with u, v, and w2 except in 
high intensity turbulent flows. The great difference is that a V-
shaped hot-wire is less sensitive to w fluctuations than a con
ventional inclined straight wire. 

2 As the pitch angle c/>0 increases, the sensitivity of V-
shaped hot-wire to u fluctuations increases, while that of v 
fluctuations decreases accordingly. Thus, the best probe orien
tation to the flow is in the range of 30 deg < <£0 < 45 deg, where 
both sensitivities become of the same order of magnitude. 

3 An important source of error in measurements of u and 
v fluctuations with an X-wire is the effect of the w component 
of velocity. This error can be reduced considerably by using 
two V-shaped hot-wires in an X arrangement. 

4 The proposed technique has been tested in 
measurements of Reynolds shear stress very near the wall 
where a conventional X-wire could hardly be used, and the 
results obtained have proven very satisfactory. 
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An LDA Study of the Backward-
Facing Step FIow3 Including the 
Effects of Velocity Bias 
The subsonic, backward-facing step flow was studied experimentally to provide 
structural information and test data for modelers. A single-component laser-
Doppler anemometer was the primary measurement instrument. The effects of 
velocity bias on the LDA results were examined in detail. It was concluded that 
velocity bias was small ( < 4percent) in the uncorrected measurements and nonexis
tent when a periodic sampling strategy was employed. The measurements show that 
the pressure gradient at reattachment is lower in the present experiment than in most 
previous work, due to the thick boundary layer at separation. Turbulence levels in 
the separated shear layer are also reduced by the thick upstream boundary layer. 
Scaling of the streamwise coordinate on the reattachment length produced the best 
agreement with previous data. Agreement of turbulence quantities was particularly 
good downstream of reattachment. 

1 Introduction 

Flow fields containing regions of turbulent separated flow 
occur frequently, both in the natural environment and in man-
made devices. Separated flows play an important role in 
establishing and limiting the performance of such varied 
devices as diffusers, airfoils, combustors, and sewage-
treatment-plant settling basins. Historically, much informa
tion about turbulent separated flows was gained visually (e.g., 
Abbott and Kline (1)) or inferred from hot-wire and pressure 
measurements (Chapman et al. [2], Bradshaw and Wong [3], 
Kim et al. [4]). However, the detailed structure of the flows re
mained largely a mystery, because the velocity field contains 
regions of instantaneously reversing flow in which conven
tional instruments are not accurate. It was not until the 
development of the laser-Doppler anemometer (LDA) in the 
1970s that potentially accurate measurements throughout a 
turbulent separated flow could be made. Unfortunately, much 
of the LDA data may be subject to undocumented errors 
caused by velocity bias. 

The objective of the present paper is to present a detailed 
data set for the two-dimensional, backward-facing step flow, 
including structural information for turbulence-model 
development. Such a presentation must include documenta
tion of the two-dimensionality of the flow as well as a 
reasonable assessment of the experimental uncertainty. The 
most serious question regarding the uncertainty is how to 
evaluate or eliminate the velocity bias in LDA measurements. 
It is widely recognized that velocity bias can occur in LDA 
measurements in which a counter-type signal processor is 
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Karlsruhe, Federal Republic of Germany 
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used. Many "corrections" and sampling strategies have been 
proposed to eliminate the bias, but its elusive nature has led 
some investigators to abandon all velocity-bias corrections 
(e.g., Driver and Seegmiller [5]). 

The first phase of the present study, then, was to make a 
detailed examination of the uncertainty of LDA 
measurements in turbulent, separated flows. The performance 
was studied by comparing LDA measurements in a turbulent, 
separated flow to data obtained from a pulsed-wire 
anemometer and a thermal tuft. In addition, the results of 
several different LDA sampling strategies were compared. 
This work was intended to help clarify the inaccuracies in past 
LDA-based separated flow studies, as well as to supply 
guidelines for uncertainty estimation in the present work. 
Phase 2 documented the flow two-dimensionality and the in
itial conditions, and the final data set was produced in phase 
3. The present paper follows this same outline. 

2 Experiment 

The experiments were conducted in a single-sided, sudden 
expansion wind tunnel. The channel height upstream of the 
expansion was 15.2 cm, and the step height was 3.8 cm, giving 
an expansion ratio of 1.25. The upstream reference velocity 
(t/ref measured 12.7 cm upstream of the step in the freestream) 
was 15 m/s, resulting in a step-height Reynolds number of 
36,000. The boundary layer at the step edge was relatively 
thick (S/h=1.0) and fully turbulent (Re„ = 3500). The step 
aspect ratio was 11:1, which is sufficient to ensure two-
dimensional flow according to the criteria of deBrederode and 
Bradshaw [6]. The reattachment distance for these conditions 
was 6.6 step heights. 

An open-circuit wind tunnel supplied filtered air to the test 
section at the reference speed. Flow conditioning was per-
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formed by a large-pressure-drop heat exchanger, five fine 
mesh screens, and a 4:1 contraction ratio nozzle. These com
ponents were designed to reduce the turbulence intensity and 
to ensure uniform inlet conditions for the test section velocity 
and temperature. Measurement upstream of the test section 
indicated a free-stream turbulence level of 0.2-0.4 percent. 
The documentation of tunnel two-dimensionality is presented 
in a later section. 

A dual-beam, forward-scatter LDA system was the primary 
velocity measurement instrument. Light was supplied by a 
Lexel two-Watt argon-ion laser, and all measurements were 
made using the green line at 514.5 nm. The LDA optics were 
obtained from TSI, Inc., with the exception of two front sur
face mirrors (Newport Research Co.), which were used to steer 
the beams 180° as required due to space limitations in the ex
perimental area. The focusing-lens focal length was 490 mm, 
and beam intersection half angle, 7.5 deg. The receiving optics 
were placed 1 cm above the measuring plane at a distance of 
450 mm. A Bragg cell with a shift frequency of 5 mHz (about 
10 m/s in velocity units) was used at all times. Tests indicated 
that a doubling of the shift frequency had no effect on the 
measured velocities anywhere in the flow field. A TSI model 
1980A counter processor was used. Data were transferred to 
the PDP-11 laboratory computer using a direct-memory-
access interface (TSI Model 1998). 

The LDA was calibrated with a one-point calibration 
against a pitot tube in situ. This was judged easier than any at
tempt to measure beam intersection angles. Since all data are 
presented normalized by i/ref, and the LDA is a linear instru
ment, the calibration method is rather irrelevant. By using 
averaging times greater than 40 seconds and more than 2000 
points at every location, the statistical uncertainty was 
estimated to be less than 1 percent throughout the flow. It is 
important to note that the statistical uncertainty is not an 
estimate of bias, but rather an estimate of repeatability. Bias is 
considered in the next section. 

The use of an LDA system in air usually requires the in
troduction of seed material to serve as scattering centers. The 
present study used a TEM Ltd. NPL-type smoke generator 
positioned in the filter box upstream of the blower inlet. By 
locating the seeder upstream of the blower, flowfield seeder 
interactions were minimized, and the blower itself could be 
used to help distribute the seed uniformly. The seeding par
ticles were mineral-oil droplets (White Mineral Oil #9). 
"Smoke" was generated by pumping a thin film of the oil on
to the external surface of a heated cylinder. The vaporized oil 
recondensed in the air stream to form the seed particles. 

The conventional instruments used to judge the accuracy of 
the LDA were the pulsed-wire anemometer and the thermal 
tuft. Extensive tests (Westphal et al. [7], Eaton and Johnston 
[8]) have shown good agreement between the pulsed wire and a 
hot wire in regions where both instruments should be accurate. 
Typical uncertainty estimates for the PWA are about 2-3 per

cent of Utet (Westphal, et al. [7]). The thermal tuft (Eaton et 
al. [9]) is a near-wall probe capable of sensing instantaneous 
flow direction. Its ouput was sampled to determine the frac
tion of time the flow moves in the downstream direction, y. 
Because of the thermal tuft's simplicity, it is felt that it is the 
most reliable conventional measurement instrument in the 
separated region. The LDA may be compared to the thermal 
tuft by extrapolating the LDA results to 0.3 mm from the wall. 

Wall skin friction was measured using the pulsed wall probe 
of Westphal et al. [10]. This probe, like the pulsed wire, is a 
three-wire probe in which the center wire is pulse heated and 
the outer wires act as resistance thermometers to measure the 
time of flight. In the present instrument, the three wires are 
parallel and very close to the wall. The probe measures the 
velocity of the fluid within the sublayer and infers skin friction 
from a calibration performed in a reference flow—at the same 
distance from the wall. Westphal showed that the calibrations 
performed in laminar or turbulent channel flows differed 
from each other by less than 5 percent. 

3 LDA Performance 

3.1 Simplified Analysis. The performance of the LDA 
was studied specifically with regard to possible bias effects, in 
order to choose the best averaging scheme for the conditions 
of the present experiment and to obtain accuracy estimates. In 
turbulent flow, velocity bias occurs when the particle measure
ment rate, fp, is correlated to the magnitude of the instan
taneous velocity vector at a point in the flowfield (McLaughlin 
and Tiederman [11]). For uniformly seeded incompressible 
flows, during periods of relatively high velocity, more par
ticles can be measured per unit time than in periods of relative
ly low velocity. If the sample mean is calculated by summing 
the velocities of all the measured particles and dividing by the 
number of particles, this calculated mean (a particle average) 
will be higher than the true time average—it will be biased. 
Thus bias results, because the measurement frequency of any 
velocity class, «,-, is proportional to the velocity. 

The bias may be "calculated" by assuming the relationship 
between the measurement frequency and velocity, assuming 
the shape of the velocity probability density function, PDF, 
and assuming one-dimensional flow. Such calculations have 
been performed, for example, by McLaughlin and Tiederman 
[11], by Buchhave [12], and recently by Erdmann and Tropea 
[13]. Calculations can often be useful as a guide to where to 
expect the worst bias. Since the past results were valid only for 
attached flows, a new estimate of the magnitude of the veloci
ty bias is made using a simple square-wave velocity signal, 1-D 
flow, and assuming a direct proportionality between velocity 
and measurement frequency. The resulting "calculated" bias, 
normalized on the reference velocity is: 

N o m e n c l a t u r e 

Cf = 
cP = 
fp = 

/ , = 
/ , = 
H = 
TV = 
P = 

Re = 
T = 

r J 1/2 PU?ef 

P~PKi/ 1/2 pUlef. 
frequency of valid particle 
arrival 
sample frequency 
turbulence frequency scale 
step height 
number of velocity samples 
pressure 
Reynolds number 
sampling time interval 

Tbd 
U 

UN 

UK{ 

u' 

v' 

X 

time between data samples 
instantaneous streamwise 
velocity 
maximum reversed-flow 
velocity 
reference freestream velocity 
fluctuating component of 
streamwise velocity 
fluctuating component of nor
mal velocity 
streamwise coordinate, origin 
at step 

*r 
X* 

5 

e 
V 

T 

P 

= reattachment point 
= (x-xr)/xr 

= boundary-layer thickness 
= momentum thickness 
= kinematic viscosity 
= shear stress 
= density 

Superscripts 

' 
= time averages 
= fluctuating quantity 
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u' <U 

; u' >U 

(1) 

ref 

The reference velocity is used rather than the local velocity 
because separated flow results are generally presented in this 
way, and thus it is the error relative to [/ref which is of primary 
importance. It should be pointed out that, although a square 
wave is hardly a realistic velocity signal, the present results 
agree with the results of McLaughlin and Tiederman [11] and 
Buchhave [12] for low turbulence intensities. This occurs 
because at low turbulence intensity the bias is proportional to 
the square of the turbulence intensity, regardless of the shape 
of the velocity PDF. The present formulation has the advan
tage of being a simple, closed-form solution, valid throughout 
the separated region. Though it will be shown later to be quan
titatively inaccurate, qualitatively the right trends are 
predicted. 

Equation (1) above suggests two things. First, as has long 
been recognized, the magnitude of the velocity bias is a strong 
function of turbulence intensity. Second, equation (1) suggests 
that the magnitude of the bias can never be any worse than the 
magnitude of the mean velocity. At the reattachment point 
itself, there can be no bias because, as the mean velocity 
decreases, the velocity PDF becomes relatively more sym
metric around zero velocity. Since the bias is proportional to 
the magnitude of velocity, the negative velocity regions 
balance out the positive ones—decreasing the bias. Applying 
equation (1) to a typical separated-flow velocity profile sug
gests that the maximum bias will occur in the free shear layer 
where the turbulence intensity is large but the mean velocity is 
still significant. This finding was confirmed by experiment. 

3.2 Averaging Schemes. Many sampling and averaging 
schemes to reduce or eliminate velocity bias have been pro
posed. Those tested in this program are described below. 

Particle Average. The velocity of each valid particle is 
measured, and the average is formed arithmetically. 

<u>P=t,WN 
As previously discussed, this average may be biased if the par
ticle arrival rate is correlated to £/,-. 

Tbd Average. Barnett and Bentley [14] proposed that the 
best way to eliminate the velocity bias was to start with the 
definition of the time average, 

U--
1 f 

T u(t)dt 
Jo 

and approximate that expression as a sum replacing the dif
ferential time, dt, with the time between measured data points, 
Tbd. Thus 

<^>rw=EWx7W/iX 
This method is called the Tbd method after the weights as
signed to each velocity sample. If the sampling is periodic, the 
expression reduces to the arithmetic average. The Tbd scheme 
may also be viewed as a correction scheme. Since Tbdii = 1//P)I-
iffPj<xUj, weighting by Tbd should correct for the bias. 

Periodic Sampling. A possible method of eliminating the 
velocity/data-rate correlation, and therefore the velocity bias, 

c 
o 

U(M/S) 

0 2 

U (M/S) 

Fig. 1 Comparison of the average interdetection time (in milliseconds) 
for different velocity classes. 
x/H = 3.3, ylH= - 0 .5 (a) tp = 500 Hz 10,000 bursts; (b) fp = 50 Hz, 2000 
bursts. 

would be to enable the counter at regular intervals and process 
the next Doppler burst to arrive (Stevenson and Thompson 
[15]). With this method, the counter analyzes the Doppler 
bursts at an almost uniform r a t e / which is slower than/p. 
Uniform sampling is assumed, and a simple average is used to 
obtain (U)ps. Since exactly equally spaced intervals are not 
possible, it would seem likely that a turbulence frequency 
scale, / , , might also be important. I f the velocities o f two con
secutively sampled bursts are strongly correlated, the waiting 
time might be a function of fp and [/,-, resulting in bias. 

Erdmann and Tropea [13] analyzed this situation and also 
concluded that the three important frequency scales were/ , 
fp, and/,. We feel that, iffp »fs, then < U)p would represent 
an unbiased estimate of U, while iffp ~fs, velocity bias would 
result. On the other hand, Erdmann and Tropea predict that it 
is fp/ft which is most important. While data presented by 
Stevenson et al. [15] suggest that, when fp/fs > 10, the result is 
independent of fp/fs, it is difficult to assess the effect of / , 
because a wide enough range of seed rates was not available. 
In the present study, fp/fs> 10 was used at all times. 

D/A Method. Mayo [16] in the discussion which followed 
Barnett and Bentley's paper, suggested that a time average 
could be generated by a sample-and-hold circuit, turning an 
inherently digital signal from the counter into an analog-like 
signal. The signal can then be processed by sampling with an 
A/D converter at a frequency fs. Dimensional analysis again 
suggests that/ , , fs, and/, all influence the magnitude of the 
bias. Thus the same cautions and limitations apply as for the 
periodic sampling method. 

The Tbd method, the periodic sampling method, and the 
D/A method all approximate the true time average in a slight
ly different manner. In practice, it was found that these 
methods behaved almost identically. Because of this agree
ment, the three methods are collectively referred to as time-
average methods. 

3.3 LDA Performance Results. As previously discussed, 
if the measurement rate, fp, is correlated to the velocity, the 
particle average should be biased. To examine the correlation 
of £/, with/,,, Durao, Laker, and Whitelaw [17] suggest that 
the intermeasurement time distribution be examined. If 
Uj<xfPth then Uj<xl/Tbd. In Fig. la, the average Tbd falls with 
increasing magnitude of velocity. This is a clear indication 
that, if the particle average is used to calculate the mean, 
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Fig. 2 Histogram of streamwise velocity at xlH = 4.5, y/H = - 0.5 show
ing "hole" centered around l/ = 0 

velocity bias would result. On the other hand, Tbd appears to 
be independent of the velocity in Fig. 1(b). Here there is no 
correlation between Ut andfpi. Thus a particle avarage would 
not be biased in this case. In fact, the mean velocity, as 
calculated by the particle average, shifted from 0.6 m/s for the 
conditions of Fig. la to 0.45 m/s for the conditions of Fig. lb. 
The flow conditions for the two histograms are identical ex
cept that in (a) the laser power has been increased, increasing 
fp.* The importance of this experimental result is that the bias 
can "disappear" rather unexpectedly. Thus any proposed 
bias-correction scheme must be able to handle such occur
rences. Bias-elimination methods such as the 1-D or 2-D 
McLaughlin-Tiederman correction, or the residence-time 
weighting scheme, which always "corrects" the mean velocity, 
will fail in the general case—if the bias can suddenly disap
pear. For example, for the conditions of Fig. 1(b), any of these 
methods would result in an overcorrection of the bias. 

Since a lowering of laser power lowers the average measure
ment rate attainable, it appears as if the bias has been 
eliminated by lowering the data rate. These results are in con
trast to the results of Johnson et al. [18], who found that the 
bias remained constant below the fastest measurement rate of 
the detector. 

The explanation for this seeming contradiction lies in signal-
to-noise ratio (SNR) effects. Consider any velocity class, £/,-. 
The larger the velocity, the fewer total photons are scattered 
from the measuring volume, because the particle is physically 
present in the measuring volume for a shorter time. However, 
the background light level would generally be independent of 
velocity. For this reason, faster-moving particles have lower 
SNR, on average, than slower-moving particles, and a smaller 
percentage of available faster-moving particles are processed 
than slower-moving particles, counteracting the bias. For this 
mechanism to be important, the total SNR must also be 
relatively low, so that the total fraction of particles affected is 
large. As the laser power is lowered, the fraction of particles 
affected by this mechanism might be increased if the level of 
light from the background sources, i.e., experimental setup, is 
not reduced as much as the level of light scattered from the 
measuring volume. Clearly, this is an extremely configuration-
dependent result. Thus, the experiment of Johnson et al. [18] 
probably had higher SNR than the present one, and a smaller 
fraction of particles was affected by the present mechanism. 

A second interesting anomaly in the performance of the 
LDA was observed, as illustrated by Fig. 2. This velocity PDF 
was processed using the Tbd method and was taken well away 
from the wall and near the line of U= 0. Figure 2 contains a 
"hole" in the PDF centered around the [7=0 point. The hole 
is always centered around zero velocity, regardless of the 
mean. PDFs obtained using periodic sampling and the D/A 
method also have this feature, while when data were processed 
using the particle average, the hole was not always present 
(about 60 percent of the time). Even though some bimodal 
PDF's have been reported in the literature (Durst and Tropea 
[19]), the authors believe this hole is not physical and thus 
represents an LDA error. The obvious explanation is that the 
particles did not cross enough fringes to make a measurement 
possible at speeds near zero. However, this explanation sug-
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Fig. 3 Forward-flow fraction in the recirculation region. xlH = 5.87 
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Fig. 4 Errors of various LDA bias correction schemes compared with 
the Pulsed Wire (PWA) and the Uncorrected IDA (PARTICLE AVE). 
(x/H = 4.5). 

gests that, by reducing the number of fringes required for a 
measurement, the "hole" would disappear. When the number 
of fringes required for a measurement was reduced from 32 to 
16, 8 or even 4, there was no apparent effect—the "hole" still 
existed. 

The effect of the bimodal structure on the mean RMS quan
tities was evaluated. In the worst case, the effect was 1/2 per
cent on the mean and 1 percent on the measured turbulence in
tensity (percent of Ule!). While PDFs such as those seen in Fig. 
2 are annoying, the magnitude of the effect was rather small in 
the present experiment and should not detract from the con
clusions of the study. 

The effectiveness of the bias-reducing methods studied here 
can be seen in Figs. 3 and 4. Figure 3 contains profiles of the 
fraction of time the flow moves downstream, 7, measured 
with the pulsed wire, the LDA, and the thermal tuft just 
downstream of the reattachment point. Here, very good agree
ment is seen between the various instruments. While the ther
mal tuft always agreed with the time-averaged LDA methods 
to within 5 percent, the agreement between the pulsed wire and 
the thermal tuft was often no better than 20 percent, the puls
ed wire often giving erroneously high results. This lack of 
perfect agreement between the pulsed wire and the thermal 
tuft is typical of past results in our lab. It is believed that this 
effect is due to the pulsed wire "dropout" near zero velocity, 
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there is no difference between the particle average and the time 
average, again as predicted by equation (1). In addition, the 
point where the largest differences occur between the time-
average methods and theparticle average is in the free shear 
layer, away from where C/=0. 

There are at least two explanations for the quantitative dif
ference between the model and the measured bias. First, the 
analysis leading to equation (1) is quite crude—a square wave 
is hardly a realistic velocity signal. Second, the results shown 
earlier indicate that the measured bias changes with SNR, and 
thus other experimental setups could result in a measured bias 
different from that of the present experiment. 

Considering the results presented here, it is not surprising 
that several investigators have not found a bias effect in 
boundary-layer-type flows. The bias is significant only in 
highly turbulent regions. Even in the separated region, uncor
rected LDA data appear to be as accurate as those of the 
PWA. In fact, uncorrected LDA data are often closer to the 
PWA results than are the corrected LDA data. Buchhave [12] 
found a similar result comparing hot-wire data with LDA data 
in a free jet. This is just an indication that the LDA bias 
observed in the present flow is no worse than the accuracy of 
the appropriate conventional technique in the same flow. 

While Fig. 4 shows that all LDA methods lie quite close to 
the PWA results, LDA-thermal tuft comparisons indicated the 
time-average LDA methods agreed better with the thermal tuft 
than with the pulsed wire. Since the thermal tuft is considered 
the most accurate conventional instrument in the separated 
flow zone, the time-average methods are concluded to be 
bias-free. The qualitative behavior of the difference 
< U)p - < U) T , , which follows the expected bias trends, adds 

further evidence to the belief that, although the bias is small, it 
evidently exists. Thus, this report concludes that any of the 
time-average methods tested here, when properly used, cor
rects for the effects of LDA bias. For this reason, the periodic 
sampling method was used to process the LDA data described 
in the next sections. 

due to viscous diffusion effects (Bradbury and Castro [20]). 
The good agreement between the LDA time-average methods 
and the thermal tuft is critical, because the thermal tuft is the 
most reliable conventional instrument for separated flows. 

Figure 4 presents the differences among the mean velocity 
results from the separated flow region (x/H=4.5), as 
measured by the various LDA methods and the PWA. The 
reference velocity used to form the differences shown in the 
figure is the Tbd method. The most striking feature of Fig. 4 is 
the small differences among the various LDA methods and the 
PWA. The D/A method, periodic sampling method, and the 
TM method all lie quite close together and 1/2 to 2 percent 
below the PWA results, within the uncertainty of the PWA. 
Note also that the region of the largest differences between the 
PWA and the LDA is also the region of the largest velocity 
gradient. In regions of high gradient and high turbulence in
tensity, "turbulent diffusion" might cause the mean velocity 
as measured by the pulsed wire to be too high. Therefore, the 
region of the largest uncertainty in the PWA results cor
responds to the region of the largest difference between the 
LDA and the PWA. 

Figure 4 also shows that the particle average, uncorrected 
for any bias effects, also lies quite close to the PWA as well as 
the other LDA methods. Choosing any LDA method or the 
PWA as the reference, the worst "bias" seen in the experi
ment was less than 4 percent of the reference velocity. The 
behavior of < U)p relative to the time-average methods is ex
plained qualitatively using the bias calculation of equation (1), 
though the measured LDA bias is only a fraction of that 
predicted. Specifically, equation (1) predicts negative bias 
where the mean velocity is negative, in accordance with the 
results shown in Fig. 4. Note that, near the point where U= 0, 

4 Tunnel Qualification 

Tunnel qualification consisted of four main tests: (1) a 
spanwise-uniformity check of the total pressure at the step 
edge, (2) a comparison of the separating boundary layer to 
well-known data, (3) reattachment-position spanwise unifor
mity check, and (4) mass and momentum balance checks over 
the entire test section to determine the two-dimensionality of 
the flow. Inlet spanwise uniformity was checked by making 
spanwise traverses with a total pressure probe 2.5 cm upstream 
of the step edge. Traverses were made at four different heights 
in the boundary layer, including one mounted flush on the 
wall. This proved to be the most sensitive test, indicating that 
total pressure was uniform to within 2 percent over the mid-75 
percent of the span. 

Mean-velocity and turbulence data (Fig. 5) show that the 
upstream boundary layer behaves like an ordinary flat-plate 
boundary layer. The mean velocity follows the log-law quite 
closely. The computed shape factor for the data is 1.35, and 
the Clauser G parameter is 6.26. The skin friction, as com
puted by the log-law, was 0.0034, within 1 percent of that 
given by the Ludwieg-Tillman correlation. Clearly, mean 
results indicated a well developed normal boundary layer. The 
agreement between the present turbulence intensity results and 
those of Klebanoff [21] is fair. The present results are five per
cent higher than Klebanoff's in the inner region between 
y/5 = 0.l and 0.4. Beyond .y/<5 = 0.4, the present results are 
higher than those of Klebanoff, because of the higher free-
stream turbulence. 

The spanwise uniformity of the reattachment line was 
checked and found to be uniform within 0.3 h over the middle 
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Fig. 6 A comparison of the present pressure data with that of 
Westphal and Roshko and Lau. 
cp=(cp*-cPmin)/(i-cPm.n). 
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Fig. 7 Mean velocity profiles downstream of the step. ReH = 36,000, 
5/H = 1.0. Profile locations (left to right): 
Top: xlH = 2.0, 3.33, 4.67, 6.0, 6.67, 7.33; 
Bottom: x/H = 8.67, 10.0, 12.0, 14.0, 16.0, 18.0. 

70 percent of the span. There were no ports outside this 
region, so this estimate may be conservative. 

Mass and momentum balance checks, assuming flow two-
dimensionality, were performed. The mass flux balanced to 
within 3 percent, even at the outlet of the test section. The 
momentum balance was performed by considering a control 
volume within the entire test section. The momentum deficit in 
the outflow was necessarily balanced by the pressure rise in the 
tunnel and the skin friction on the step wall and opposite wall. 
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Fig. 8 Streamwise turbulence intensity profiles downstream of the 
step. ReH =36,000, 5/H = 1.0. Profile locations (left to right): 
Top: x/H = 2.0, 3.33, 4.67, 6.0, 6.67, 7.33; 
Bottom: x/H = 8.67, 10.0, 12.0, 14.0, 16.0, 18.0. 

Fig. 9 Comparison of the computed streamlines for the present experi
ment with the reattachment streamline of Eaton and Johnston—present 
exp.—Eaton and Johnston 

The momentum balance was performed at one location 
upstream of reattachment and at two locations downstream of 
reattachment. At all three locations, the momentum equation 
balanced to within 3 percent of the inlet momentum flux. 

5 Final Results 

Figures 6-11 present the final results of the one-component 
LDA study of the backward facing step. Uncertainty estimates 
for all measurands are tabulated in Table 1. Uncertainties 
were estimated using a worst case analysis which is more con
servative than the 95 percent confidence interval typically 
used. Reattachment as measured with the thermal tuft was 
6.6H. All data are normalized on the reattachment length in 
the streamwise direction and on step height in the vertical 
direction. Figure 6 presents the pressure data normalized on 
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Table 1 Uncertainty estimates 

Measurand Uncertainty 
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Fig. 10 Recovery region behavior of the streamwise component of tur
bulence intensity for several experiments 

-

h 

-

o 

* * 
Ao D 
n 

o 
A 

o 

o 

o ° 

0 PRESENT 
A WESTPHAL 
• DRIVER 

L _ l 1 

Fig. 11 Comparison of C, data between several experiments 

the reference dynamic head and then renormalized, following 
the suggestion of Westphal et al . [7] and Roshko and Lau [22]. 
Westphal collapses several different backstep cases, including 
the results of a backstep angled at 10° to the step and the blunt 
body results of Roshko and Lau, onto a single curve, through 
the reattachment point . This normalization is significant, 
because it eliminates the effect of geometry (including expan
sion ratio) on the pressure rise through reat tachment. It is in
teresting to note that the present results do not lie on the cor
relation of Westphal et al. Further checking indicated that all 
of the results plotted by Westphal had thin boundary layers at 
separation, while the present results have a thick boundary 
layer at the step edge. Further evidence of this effect is that the 
pressure measurements of Driver and Seegmiller [5], who had 
a thick boundary layer at the step edge, also deviate from the 
correlation. 

Figures 7 and 8 present the LDA-measured mean and rms 
fluctuating components of streamwise velocity. While the pre
sent results look much like previous backstep data, there are 
some subtle changes. As with most backstep flows, the max
imum backflow velocity is about - 0.2 Uls{ and occurs about 
0.1 h above the bo t tom wall. Thus the entire backflow region 
is supplied by a very thin region near the wall. This is possible 
because of the strong streamwise pressure gradient in this 
region. In fact, if this thin region of backflow were to be con
sidered a boundary layer growing in the — x direction, the 

3 
U/Un! (LDA) 
U/Ulef (PWA) 
u'/UK( (LDA) 
U'/UKS (PWA) 

±0.005 
±0.05 
±0.1H 
±0.01 
±0.03 
±0.03 
±0.03 
±0.03 @7 

±0.01 ©7 

= 50% 

= 95% 

computed acceleration parameter (v/Ul!)/(dUN/dx) would be 
two orders of magnitude higher than the relaminarization 
limit! (UN is the maximum velocity in the -x direction.) 

The turbulence-intensity results in the region of reattach
ment are 10-15 percent lower than the results of Ea ton and 
Johnston [8] and Westphal et al. [7]. The turbulence-intensity 
results do correspond with those of Pronchick et al. [23], who 
also had a thicker boundary layer at the step edge. The lower 
u' is not surprising, considering the pressure results. Since 

dp dr 

dx dy y = 0 

at reat tachment, peak u'v' is probably lower in the present 
case than in that of Ea ton . If the normal structural assump
tions hold true, u' would also be expected to be lower. Thus it 
appears that the effect of a thicker initial boundary layer is to 
reduce the pressure rise and the pressure gradient at reattach
ment and to lower the turbulence intensity at reattachment 
compared with what it would normally be. 

Streamlines computed from the mean-velocity profiles (see 
Fig. 9) are in excellent agreement with those of Ea ton and 
Johnston [8] when the x-coordinate is normalized on xr. The 
reattachment length in the present experiment (6.6 h) is con
siderably shorter than that of Ea ton and Johnston (8.0 h), 
primarily due to the different expansion ratio used. Thus , scal
ing of the coordinate on xr is seen to be effective in collapsing 
data from different experiments. 

Figure 10 presents a comparison of values of peak stream-
wise turbulence intensity through the reat tachment region with 
some data downstream of reat tachment for other initial 
boundary-layer thicknesses and the results of other workers. 
Though there are fairly large differences ahead of the reat
tachment point, the da ta roughly collapse downstream of reat
tachment when the streamwise coordinate is normalized on xr. 
Normalization on h was at tempted and found to be much less 
successful. Though the data presented represent a range of in
itial b/h and expansion ratios, it should be remembered that 
the flow in this region is so complex that Bradshaw and Wong 
(1972) comment, "At tempts to correlate properties of the 
relaxation regions downstream of different obstacles in terms 
of a few parameters describing the perturbations are not likely 
to succeed." 

Figure 11 presents the skin-friction measured on the step 
wall with the pulsed wall probe. These results agree nicely with 
the results of Westphal et al. [9] using the pulsed wall probe 
and of Driver and Seegmiller [5] using a laser-based viscosity-
balance method. Note here tha t , al though the experiments 
compared have quite a range of expansion ratio and initial 
boundary-layer thickness resulting in large differences in reat
tachment length, the results of skin friction are the same in the 
separated region for these flows. 

Though the value of Cf is small in the separation zone when 
normalized on the upstream reference velocity, when nor
malized on the maximum backflow velocity, Cf~0.02. It is in
teresting to note that such large values are more typical of 
laminar than of turbulent flows. 

The good collapse of Cf and u', among several experiments 
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when the streamwise coordinate is normalized by xr is en
couraging. Westphal et al. [7] also found an excellent collapse 
of static pressure data. The reason for the success of this nor
malization, which was suggested by Westphal et al. is un
doubtedly due to the physical importance of xr both in 
downstream-flow development and in the recirculation zone. 
Because of the success of the xr normalization the authors 
recommend that comparisons of computations with ex
periments take place at the same x/xr location, rather than the 
same x/h position. This normalization eliminates any effect of 
the miscalculation of the reattachment location. 

6 Summary of Conclusions 

Comparison of the LDA results reduced by several different 
schemes and pulsed-wire anemometer data snowed that veloci
ty bias was not a major problem in the present experiment. A 
small amount of velocity bias (< 4 percent) was measurable in 
particle averages but was eliminated by the time-average 
methods tested here. The periodic sampling method of Steven
son and Thompson [15] was selected for the main data 
acquisition. 

The present LDA results for the backward-facing step flow 
indicate the importance of upstream initial conditions on the 
development of the free shear layer. A thick boundary layer 
causes a lower pressure rise to reattachment and a lower 
pressure gradient at reattachment than cases with thinner in
itial separating boundary layers. 

The present skin-friction results have strong similarities to 
the results of others in the separated region, despite the large 
differences in expansion ratio and initial shear-layer thickness. 
Finally, because of the importance of the reattachment length 
in the correlation of all the data, it is recommended that com
putational comparisons take place at the same x/xr location to 
emphasize structural features of the flow. 
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Comparison of Minimum Length 

A second-order accurate method-of-characteristics algorithm is used to determine 
the flow field and wall contour for a supersonic, axisymmetric, minimum length 
nozzle with a straight sonic line. Results are presented for this nozzle and compared 
with three other minimum length nozzle configurations. It is shown that the one in
vestigated actually possesses the shortest length as well as the smallest initial wall 
turn angle at the throat. It also has an inflection point on the wall contour, in con
trast to the other configurations. 

1 Introduction 

Traditionally, supersonic nozzle design is done in two parts. 
Since the supersonic portion of the nozzle is independent of 
conditions upstream of the sonic line, it can be designed in
dependent of the subsonic portion [1-9]. The converging por
tion of the nozzle is then designed to produce the required 
sonic line shape. In this tradition, we discuss a class of nozzles 
with a minimum throat-to-exit length and a uniform exit flow. 
This type of nozzle is referred to as a minimum length nozzle 
(MLN). 

There are two fundamentally different MLN types. The first 
assumes a straight sonic line at the throat and is referred to as 
a straight sonic line MLN. For this type, the wall at the throat 
generates a centered expansion. The second type has a circular 
arc sonic line which is followed by a conical flow region with 
no centered expansion. This type is referred to as the curved 
sonic line MLN. Both types exist for two-dimensional and ax
isymmetric flows resulting in four possible configurations. All 
configurations have a sharp corner at the throat, in contrast to 
the smoothly contoured throats of conventional nozzles. 

The two-dimensional straight sonic line MLN (often re
ferred to as the classical sharp-cornered MLN) is investigated 
in references [1-6]. Reference [9] contains the first analysis of 
the axisymmetric straight sonic line MLN. Reference [4] 
presents the first complete analysis of the two-dimensional 
curved sonic line MLN. Finally, references [4, 7, 8] present 
analyses of the axisymmetric curved sonic line MLN. 

Figure 1 is a sketch of a straight sonic line MLN. The flow 
between the throat, OA, and the downstream uniform flow 
consists of two regions. For both two-dimensional and ax
isymmetric flows, the kernel region, OAB, is a non-simple 
wave region. The transition region, ABC, is a simple wave 
region when the flow is two-dimensional, and its solution can 
be obtained analytically [4]. However, it is a non-simple 
region when the flow is axisymmetric, and a numerical solu
tion is required. 

In contrast to Fig. 1, the curved sonic line MLN has a source 
flow (non-simple wave) region just downstream of the sonic 
line [4]. This is followed by a transition region in which the 

flow expands to a uniform state. At a low exit Mach number 
Mp the source flow region is roughly triangular, as in Fig. 1. 
At higher Mf values this region has a quadrilateral shape [4]. 
In this circumstance, the first wall section, starting at point A, 
is adjacent to a source flow and has a constant slope 6*. As a 
consequence, the variation of the initial wall angle 8* with Mf 

has a sharp change in slope. This variation, which depends on 
the ratio of specific heats y, is shown in later figures. 

All lengths can be normalized by the throat radius or half 
width /•,-. The wall contour of any MLN is then fully deter
mined by 7 and Mf. These parameters fix 6*, the length Xf of 
the nozzle, etc. The throat radius or half width /•,• is deter
mined by the mass flow rate. 

Application of MLNs has largely been limited to the gas 
dynamic laser [10], where only the two-dimensional, straight 
sonic line nozzle has been utilized. However, a hypersonic 
wind tunnel using an axisymmetric, curved sonic line MLN 
has been in operation for years [8]. 

Somewhat surprisingly, the literature for one MLN type 
does not discuss the other [1, 3]. Consequently, a systematic 
comparison between configurations has not been previously 
done. Furthermore, except for references [4] and [5], pub
lished comprehensive results are not available. Of course, any 
comparison of the different configurations should include the 

Contributed by the Fluids Engineering Division for publication in the JOUR
NAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering 
Division June 26, 1987. Fig. 1 Schematic of the flow field 
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Fig. 2 Three unit processes used in constructing the kernel region 

axisymmetric, straight sonic line MLN. The published 
literature, however, does not provide any discussion or results 
for this specific MLN type. (Possibly, the fragmentary status 
of MLN theory is one reason why MLNs are not more widely 
used.) 

In order to provide a systematic comparison of all four con
figurations, we have developed a computer code for the ax
isymmetric, straight sonic line MLN. Its computation is ap
preciably more difficult than the other three configurations, 
and it was not obvious that the flow would be free of shock 
waves. We present the first published results for this 
configuration. 

Section 2 describes the formulation and numerical method 
used for the axisymmetric, straight sonic line MLN. The re
maining two sections present results for this MLN and a com
parison of the four configurations. 

2 Formulation 

For steady, supersonic, irrotational, axisymmetric flow of a 
perfect gas, the MOC equations can be written as 

( M 2 - ! ) ' dM 

l + (7 - l )A/V2 M 

dr 

~dx 

+ de— 
tang dx 

= 0 (la) 
(A/2- 1)1/2 + t a n 0 ,. 

= t an [0 - s in - ' ( l /M) ] (\b) 

( M 2 - ! ) 1 dM 

l + ( 7 - l ) M 2 / 2 M 
-dd-

tane dr 

(M2-l)1/2tan8+l r 
= 0 (2a) 

dr 

~~dx 
- = tan[0 + s in - | ( l /M) ] (2b) 

where x and r are the axial and radial coordinates, respective
ly, and 6 is the flow inclination angle. Equations (1) hold on 
the right-running C_ characteristics, while equations (2) hold 
on the left-running C + characteristics. In order to save com
putation time, the Prandtl-Meyer function v is not used. 

The differenced form of equations (1) and (2) are easily 
solved for the x, r, M, and 6 variables. The resulting equations 
for a grid point in the kernel or transition region are listed in 
the Appendix. The sweep procedure for the kernel is evident in 
Fig. 2. For the upstream-most characteristic (Fig. 2(a)) unit 
process 3 is used. For the next point (Fig. 2(b)) unit process 2 is 
used. In Fig. 2(c) the interior point unit process is utilized, 
while the unit 3 process is again used in Fig. 2(d). 

0 1 2 3 4 
x 

5 6 7 

0 1 2 3 

Fig. 3 Computer plots illustrating the effect of grid compression. All 
plots are for 7 = 1.4, B* = 10°. (a) has no grid compression, (b) and (c) 
have moderate compression. 

The kernel computation starts at point A with a known 
value for 8*. We set Ad = Av = 8*/N, which results in Arrays 
whose angular spacing decreases as AB is approached; see Fig. 
3(a). This results in a nearly uniform grid in the downstream 
part of the flow, but in a highly nonuniform grid near the 
throat. As a consequence, the wall contour downstream of A 
is poorly represented. At only a slight increase in computa
tional time, this defect is corrected by a grid compression 
scheme. Additional characteristics, starting at point A, are in
serted between the sonic line and the first regular C_ 
characteristic. A power law distribution 

is utilized, where M,- and Nj are fixed integers that are not in
cremented with j . 

Figure 3 shows the effect of grid compression. In this figure, 
7=1.4 ,0* = 10°, Ar = 20, and My is 2.681. Figure 3(a) is the 
basic grid with no compression. Figure 3(b) has moderate 
compression with Nj = 5 and My = 2. Five additional 
characteristics have been inserted upstream of the first regular 
one. A greater degree of compression is used in Fig. 3(c), 
where Nj and M, are both five. The number of additional 
characteristics is still five, but they now start closer to the 
sonic line, and result in a more satisfactory wall contour. 

Control of the grid geometry in the transition region is 
achieved by prescribing an aspect ratio 

for the cell closest to point B. The length Save is the average 
distance between grid points on the AB characteristic, while 
S+ is the equally spaced distance between grid points on the 
BC characteristic. Figure 4 illustrates the procedure and shows 
the sweep direction in the transition region. Each sweep is in 
the C_ direction and terminates after the addition of a wall 
segment. 

The wall is determined by 

dr„ 
~ = tandw 
dx 

subject to the initial condition, dw = 8* at x = 0. This equation 
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Fig. 4 Characteristic grid in the transition region 

tween (xw, r„) and (x+ , r+) becomes a first approximation to 
the wall between these points. A predictor-corrector iteration 
is then used to find a more exact location of (x+, r + ) . Once 
(x+, r+) is located, it becomes the new wall point. The (x_, 
/•_) intersection point on the 1-3 segment is then calculated 
and becomes a new wall point using the same procedure (Fig. 
5(b)). Once the two wall points have been calculated, the pro
cedure is repeated on the next sweep. In some instances, which 
depends on AR and the grid compression, only one wall point 
is determined per sweep. 

The iteration begins by calculating (xw, rw) using equations 
(3). For the predictor step, the slope of the wall segment is set 
equal to 6n 

flow angle t 
Once (x±, r±) is calculated, the corresponding 
calculated by 

= 0, + 

= 0,+ 

(xw-x2)
2 + (rw-r2) 

(x3-x2)
2 + (r3-r2) 

(xw-xl)
2 + (rw-rl) 

r2Y 1 

)2 J 

1/2 

(03^2) 

(0,-03) 
u (x3-xi)

2 + (r3-,v 

The corrector calculates an updated intersection point, (x±, 
/•±), using an average wall slope (6W + 0 ± ) /2 . This step is 
repeated until the relative change in the point location and the 
wall slope all satisfy a convergence criterion e. This procedure 
terminates when the BC characteristic is reached. 

The code is run in double precision on an IBM 3081 with 
CPU times ranging from 10 to 20 seconds per case. A global 
error can be evaluated by comparing the exit Mach number, 
Mf, produced by the kernel computation with one based on 
the normalized computed exit radius /y. This Mach number is 
given by the well-known formula 

1 r 2 / -y-1 \ 1 (T+IV2(7-I) 
1 Mly+1 V 2 / J 

Generally, the Mach number error, AMf, is well below 10~4. 

3 

wA-»»> 

^ \ 

s^ixyy., 

/ ^ i 

<b> 

Fig. 5 Intersection of the wall and the C ± characteristics 

is solved iteratively using an average property, Euler 
predictor-corrector scheme. 

As shown in Figs. 5(a) and (b), the characteristic segments 
1-3 and 2-3, and the wall segments are assumed to be straight. 
The upstream wall point w and the characteristic points 1, 2, 
and 3 are known. The intersection point of the wall and the 
C+ characteristic is (x+ ,/•+), while for the C_ characteristic it 
is (x_ , r_). These points are given by 

/•3+xwtan0u -m^x3-rvl 
x — (3a) 

tandw — m± 
r±=m±(x±-xi) + ri (3b) 

where m ± is the slope of the C ± characteristic. It is given by 

r-K - /•?. 

m+ =-
-x2 

m__ =- (3c,d) 

If (x+, /•+) lies on the 2-3 segment (Fig. 5(a)), the segment be-

3 Results 

Figures 6-8 show 0*, the kernel length xB, and the nozzle 
length xf versus Mf for y = 1.3, 1.4, and 5/3. (Remember that 
all lengths are normalized by r ;). As expected, the smallest y 
value requires the largest turn angle and the longest kernel and 
nozzle lengths. The effect is appreciable at a high exit Mach 
number. One can also show [9] that the ratio xB/xj is fairly in
sensitive to y. 

Figure 9 shows the Mach number along the wall for two dif
ferent Mf values when 7 = 1.4. The Mach number, M*, just 
downstream of point A in Fig. 1 is given by v(M*) = 6*, and 
thus exceeds unity. The rate of expansion, as expected, is 
greatest near the throat. Although dM/ds, where s is the arc 
length along the wall, is small at the exit, it is not zero. A 
similar phenomenon occurs in the two-dimensional case [5]. 
Thus, the derivative of the Mach number normal to the BC 
characteristic is discontinuous. This, of course, is in accord 
with the theory of characteristics. 

The wall contour has a barely discernible inflection point 
near the throat; see Fig. 3(c). This is in contrast to the other 
three MLN configurations which have no inflection point [4]. 
Evidently, the inflection point is a result of the locally two-
dimensional flow near point A adjusting to the rest of the ax-
isymmetric flow. The location and wall slope at the inflection 
point are given in Table 1. The slope at this point does not 
greatly exceed 0*, since it lies close to point A. 

4 M L N Comparison 

For the comparison, two-dimensional straight sonic line 
MLN results are obtained from reference [5], while curved 
sonic line results are obtained from reference [4]. The initial 
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Fig. 6 Variation of 0* versus Mf 

Fig. 7 Kernel length xB versus Mf 
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Fig. 8 Nozzle length xt versus Mf 

wall turn angle 6* is shown in Figs. 10 and 11 for 7 = 1.3 and 
1.4, respectively. The slope discontinuity that occurs for the 
two curved sonic line MLNs is discussed in the introduction. 

1 1 r 

0.0 0.2 0.4 0.6 o.a 1.0 

FRACTION OF WALL ARC LENGTH 

Fig. 9 Mach number along the wall for two values of M, when 7 = 1.4 

50-r 

Fig. 10 Initial wall turn angle 6* versus Mf for four MLN configurations 
when y = 1.3 

Table 1 Location and slope at the wall inflection point when 
7 = 1.4 

0* 

2° 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 

Mf 

1.434 
1.739 
2.037 
2.346 
2.681 
3.051 
3.472 
3.961 
4.544 
5.257 
6.160 
7.352 

X 

0.407 
0.496 
0.576 
0.625 
0.690 
0.729 
0.765 
0.799 
0.834 
0.871 
0.889 
0.935 

Inflection point 
r 

1.021 
1.048 
1.081 
1.115 
1.156 
1.195 
1.235 
1.279 
1.325 
1.375 
1.419 
1.480 

e 
3.155° 
5.975 
8.606 

11.103 
13.492 
15.792 
18.015 
20.168 
22.256 
24.284 
26.254 
28.166 

Further details can be found in reference [4], which provided 
the results shown for the two-dimensional straight and the two 
curved sonic line configurations. 

In Fig. 10, 6* is the same for the axisymmetric curved and 
the two-dimensional straight sonic line nozzles up to an M} of 
about 5.2. With an increase in 7, the point where the two solu
tions diverge shifts to a larger Ms value. As a consequence, 
this point is beyond the Mach number range shown in Fig. 11. 
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Fig. 11 Initial wall turn angle 0* versus M, for four MLN configurations 
7 = 1.4 
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Fig. 12 Kernel length versus M f for four MLN configurations when 7 = 
1.4 

For a given Mf value, the comparison indicates that 8* is 
significantly smaller for the axisymmetric straight sonic line 
MLN than for the other configurations. This conclusion holds 
for all 7 values tested [9]. 

The remaining figures are for 7 = 1.4. In Fig. 12 the nor
malized kernel length is shown. There is little difference be
tween the two axisymmetric configurations, both of which are 
significantly shorter than the two-dimensional ones above an 
Mj value of about 2.5. This result is important for wind tunnel 
design because the test rhombus starts at the end of the kernel 
region. 

Figure 13 shows the nozzle length where there is little dif
ference between the two axisymmetric configurations and the 
two two-dimensional ones. Nevertheless, the axisymmetric, 
straight sonic line nozzle is the one with a minimum length. 
This result also holds at other values for 7 [9]. 

A large disparity in size between the two straight sonic line 
configurations, at an Mj- = 5, is shown in Fig. 14. The large 
difference in rw at the exit is caused, in part, by the difference 
between rw and r\. The difference in length greatly favors the 
axisymmetric nozzle whenever a rapid expansion is desired, as 
in a gas dynamic laser or in a laser isotope separation process. 
What is surprising is that this advantage comes with the addi
tional benefit of a smaller 8*. 

0 50 100 150 
x 

Fig. 14 Wall contour for the axisymmetric and two-dimensional MLNs 
with a straight sonic line when 7 = 1.4 and M, = 5 
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A P P E N D I X 

Unit Processes 
Let point 3 be an interior grid point, Fig. 2(c), where condi

tions are known at points 1 and 2. The notation 

Ol3 1~ [O1+O3I, ()23=~[(h + ()3] 

provides average values along the respective lines. For the first 
iteration, we use 
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O l 3 = ( ) l . ( ) 2 3 = ( ) 2 

Based on the finite-differenced form of equations (1) and (2), 
the unknowns are given by: 

E^E< (Al) 

(A2) 

M , = — — LL_1 (A3) 

(A4) 

where 

• * 3 " 

ry-

C23 — C13 

= £ ,
1 -C 1 3 x 3 

Dl+D2-B23r3-Bux3 

03= A 

Wjt)2 -

^4,3+^23 

- ^ 1 3 M 3 - B B X 3 

_!]l/2 

fl My3[l + ( 7 - l ) (M y , )V2] 

tan0n 

j= 1, 2 

B, 

5 T 

( [ ( M l 3 ) 2 - l ] ^ + tane1: 

tanfl, 

C 1 3=tan[e 1 3 -s in- 1 ( l /M 1 3 ) ] 

C2 3=tan(e2 3 + sin- ' ( l /M2 3)] 

Dx=AnMx+6x+Bnxx 

D2=A23mx-62+B23r2 

Ej = rj + CflXj, j=\,2 

For the second unit process, Fig. 2(b), where point 3 is adja
cent to the centerline, we have r2 = 62 = 0. While 5 2 3 is in
determinate, its resolution is well known. Equations (Al), 
(A2), and (A4) are unchanged, while (A3) is replaced with 

M j _ 2 ( A - £ 1 3 * 3 ) + ^ 2 3 ^ 2 

2 " 13 + ^23 

Similarly, for the third unit process, Fig. 2(a), we have 

r3 = 03 = 0 

r. 
= x,+-

'1 

C,3 

6x-BX3(xi-xx) 

([(M2 3)2-l]1 / 2 tan02 3 + l lr2 3 

M, = M, + 

Only the first unit process is used for the transition region. 
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Time-Dependent Laminar 
Backward-Facing Step Flow in a 
Two-Dimensional Duct 
This paper presents results of numerical studies of the impulsively starting 
backward-facing step flow with the step being mounted in a plane, two-dimensional 
duct. Results are presented for Reynolds numbers of Re = 10; 368 and 648 and for 
the last two Reynolds numbers comparisons are given between experimental and 
numerical results obtained for the final steady state flow conditions. In the com
putational scheme, the convective terms in the momentum equations are approx
imated by a 13-point quadratic upstream weighted finite-difference scheme and a 
fully implicit first order forward differencing scheme is used to discretize the tem
poral derivatives. The computations show that for the higher Reynolds numbers, the 
flow starts to separate on the lower and upper corners of the step yielding two 
disconnected recirculating flow regions for some time after the flow has been im
pulsively started. As time progresses, these two separated flow regions connect up 
and a single recirculating flow region emerges. This separated flow region stays at
tached to the step, grows in size and approaches, for the time t—co, the dimensions 
measured and predicted for the separation region for steady laminar backward-
facing flow. For the Reynolds number Re = 10 the separation starts at the bottom of 
the backward-facing step and the separation region enlarges with time until the 
steady state flow pattern is reached. At the channel wall opposite to the step and for 
Reynolds number Re = 368, a separated flow region is observed and it is shown to 
occur for some finite time period of the developing, impulsively started backward-
facing step flow. Its dimensions change with time and reduce to zero before the 
steady state flow pattern is reached. For the higher Reynolds number Re = 648, the 
secondary separated flow region opposite to the wall is also present and it is shown 
to remain present for ?— oo. Two kinds of the inlet conditions were considered; the 
inlet mean flow was assumed to be constant in a first study and was assumed to in
crease with time in a second one. The predicted flow field for t— °° turned out to be 
identical for both cases. They were also identical to the flow field predicted for 
steady, backward-facing step flow using the same numerical grid as for the time-
dependent predictions. 

1 Introduction 

The development of new methods to study complex flows 
has been progressing for many years, resulting in new 
numerical prediction procedures, e.g., [1, 2] and in new ex
perimental techniques, see [3] applicable to separated flows. 
These methods have now reached a stage of development that 
suggests their applicability to detailed studies of nonboundary 
layer flows. It has been demonstrated, e.g., see [4], that their 
complementary employment is optimal to yield physically rele
vant information on flows with regions of separation. Their 
combined usage was also attempted to carry out the present 
work. 

Contributed by the Fluids Engineering Division and presented at the Fluids 
Engineering Conference, Forum on Unsteady Flow Separation, Cincinnati, 
Ohio, June 1987 of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. 

Manuscript received by the Fluids Engineering Division, February 19, 1987. 

Among the many flow geometries employed to carry out 
basic studies of separated flows, the backward-facing step has 
gained particular attention due to its geometrical simplicity. 
This simplicity has been stressed by [5-7] who provide sum
maries of previous investigations of backward-facing step 
flows in addition to their own numerical predictions and 
detailed laser-Doppler measurements. However, all of the 
work that has gained detailed attention is related to steady 
backward-facing step flow usually encountered for the inlet 
and outlet flow conditions that are independent of time. 

Studies on double backward-facing steps were performed by 
[8] and on axisymmetric sudden expansions by [9], and [10] 
but it is unlikely that results of these studies can be directly 
transfered to the single backward-facing step flow geometry. 
For time-dependent inlet and outlet conditions particular flow 
features occur and have to be taken into account to obtain in-
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formation on the time-variation of the flow structure, 
especially the time variation of the lengths of the recirculating 
flow regions occuring behind the step and at the opposite wall. 

The above suggests that only little information exists on 
time-dependent backward-facing step flows as they are ex
perienced when the flow is impulsively started. Nevertheless, 
there have been previous studies of time-dependent backward-
facing step flows. Comparing results obtained from computa
tions using different numerical schemes, Roache and Mueller 
[12], were able to deduce physical flow information regarding 
the separation at the base of the backward-facing step. This 
was found experimentally by [13] and theoretically by [14] 
who investigated the viscous dominated corner flow region. 
The same evidence that separation occurs at the backface of 
the step, a finite distance from the corner, was confirmed by 
[15] for Reynolds numbers 10 and 100. In spite of this the 
question of where the backward-facing step flow separates is 
still a subject of controversy almost two decades after the 
results of Roache and Mueller [12], In many flow predictions 
separation is predicted to occur always at the lip of the step, 
e.g., see [9], In the few time dependent flow visualization ex
periments, e.g., see [16], no final answer is provided to where 
flow separation occurs first. One of the objectives of this 
paper is to provide information on this subject for very low 
and relatively high Reynolds number backward-facing step 
flows. 

Other investigations that should be mentioned in conjunc
tion with the present study are those of Ahmed et al. [17, 18] 
who investigated the effect of Reynolds number on the stabili
ty and transition to turbulence of the flow using a random 
vortex method for their computations. Further work was 
reported by Ghia et al. [19] who employed a vorticity stream-
function formulation and also employed in their computations 
generalized curvilinear orthogonal coordinates. The present 
work complements those time dependent flow analysis by in
vestigating the influence of the inlet flow conditions on the 
structure of the time-dependent recirculating flow behind the 
step and also studies of the influence of Reynolds number on 
the development of the flow. 

The numerical prediction procedure employed for the 
present study is described in Section 2 and the initial and 
boundary conditions are also given in this section. Numerical 
results are given in Section 3 and for t-~ t», these are compared 
with predicted results obtained with a computer program for 
steady flows and also with results obtained by laser-Doppler 
anemometry for steady, backward-facing step flows in two-
dimensional ducts. The last section of the paper summarizes 
the main findings and presents some conclusions. 

2 Computer Program For Numerical Flow Studies 

2.1 Governing Differential Equations. The flow to be 
studied in this paper is assumed to be laminar, two-
dimensional, but time-dependent and the employed fluid to be 
Newtonian, incompressible, and of constant viscosity. With 
these assumptions, the continuity equation and the Navier-
Stokes equations reduce to the following set of three partial 
differential equations: 

dU, dU, 

dx, dx-, 
= 0 (1) 

at/, at/, 
P-^r~ + pUi—— + pU2 dt 

dU2 
> — 

dt 

dx. 

&U, 

dx-

dux _ dp_ /d2ux a2(/,-
dxl \ dx} dx\ • 

(2) 

+ PUX-— + pU2 ax{ 

dU2 

dx-, 

dp /d2U 

dx dx\ 
2 + dHJ1 

where £/, and U2 represent the velocity components in the JC, 
and x2 directions of a cartesian coordinate system, p is the 
fluid density, /̂  the fluid viscosity, and / the time. 

The above set of equations can be rewritten in the form of a 
transport equation for the variable 4>: 

HP<I>) 

dt dx. 
•{pUl4>) + -—(PU24>) 

OX') 

a / d<£ \ a / d<t>\ 

dx, V dxt / dx2 V dx2 / 
+ S„ (4) 

with <t> = 1, and Ŝ , = 0 the above equation results in the con
tinuity equation and for 4> = Ui (/=1,2), and S= -dp/dxx 

(;'=1,2), the momentum equations are obtained. These equa
tions, the boundary conditions (given in Fig. 1) and the time-
varying inlet and outlet conditions define the flow problem to 
be studied. 

2.2 Computational Scheme. The conservative finite-
volume approach described by e.g., Gosman and Pun [1] was 
used in this investigation to discretize the terms in the con
tinuity and momentum equations. With this method, it is 
necessary to approximate the convective and diffusive fluxes 
of the quantity under consideration at the micro-control 
volume faces, surrounding a grid node. These fluxes were 
replaced by finite difference terms employing the quadratic 
upstream weighted differencing scheme proposed by Leonard 
[20]. However in the present study the full 13-point simulation 
was employed. This method uses a quadratic interpolation 
surface oriented with the local velocity components in an 
upwind-like manner. 

For the interpolations at each control volume face, the non-
uniformity of the grid spacing was taken into consideration. 
Some of the details of the convection discretization procedure 
are given in the [24], [26]. 

The temporal discretization was performed by an implicit 
first order forward differencing scheme, and the spatial 
derivatives were evaluated at the new time level t + At. The 
general form of the system of algebraic equations to be solved 
can be expressed as: 

(5) 

where the sum £ refers to the 12-ponts (j±k,j±[) surrounding 
the point (i, j). The system of algebraic equations (5) was 
solved at each time step by a version of the strongly implicit 
scheme proposed by Stone [21] in which the coefficient matrix 
comprises nine diagonals, see Azevedo et al. [22]. The four 
coefficients A'+2' j+2 were incorporated in the source terms; if 
they are not zero they are negative and contribute to the non-
diagonal dominancy of the matrix to be solved. 

At each time step, the solution algorithm proceeded as 
follows: the velocity field [/, and U2 were first calculated from 
the momentum equation for a guessed pressure field. The 
pressure was subsequently calculated in such a way that the 
velocity components satisfied the continuity equation. Hence, 

(3) 

X/S - 30 to 50 

Fig. 1 Flow geometry, computational domain, and boundary 
conditions 

290/Vol. 110, SEPTEMBER 1988 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.92. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the sequence of the computations was the one nowadays ac
cepted in finite difference computations of flow fields. 

The above-mentioned iteration process was continued in the 
described sequence until the sum of the normalized residuals 
for mass and momentum were less than 1 0 3 . The resulting 
fields for the velocity components and the pressure 
represented the initial values for the next time advancement. 

2.3 Boundary and Initial Conditions. Particular atten
tion was paid to a flow geometry previously used by the 
authors to study steady backward-facing step flows, see 
reference [5]. This flow geometry was made up of an inlet duct 
of 5.2 mm in height merging into duct of 10.1 mm height 
yielding an expansion ratio for 1.94. This geometry is 
sketched in Fig. 1. This figure also gives the boundary condi
tions applied in the computations. They consisted of zero slip 
boundary conditions at the wall, a prescribed inlet velocity at 
five step heights up-stream the step and zero gradient condi
tions for [/, and U2 at a distance of a minimum of four times 
the measured recirculation length downstream of the step ex
pansion for the steady flow. The impulsive start of the flow at 
t = 0 corresponded to an artificial situation where a zero 
velocity field in the entire computational domain existed ex
cept for the inlet plane where a finite velocity profile was 
prescribed for t>0 as a function of space and time. The 
U2 -inlet-velocity was in all calculations kept constant and set 
to U2 = 0 for all points in the inlet plane and for all times. 
Three different U{ profiles with the following spatial and tem
poral variations were considered: 

(i) In the first test case, the prescribed Ul(xl — - 5s, x2, 
t) - profile corresponded to a parabolic velocity pro
file with its maximum being located at the centreline 
of the inlet duct. This inlet velocity profile was kept 
unaltered for the entire duration time of the 
computations. 

(ii) In the second test case, the (/[-velocity profile 
changed with time from a top-hat profile at t = 0 
(start of the flow) to a parabolic profile when the 
steady state flow field was reached. The mass flow 
rate through the duct was kept constant for this 
case. 

(Hi) In the third case, a flow setup was considered for 
which the mean flow rate increased with time. With 
increasing flow rate the inlet velocity profile was 
assumed to change its shape in the way described for 
case (ii). 

QUDS 

u, = um •[>-(%)'] + U2(x2,t) (6) 

with 

U(> xi't)= Li 5 *exp( a2t)cos(ax2) (6a) 

and with 

a = (2/1+1)-

where h/2 is half of the inlet channel height and U(x2,t) 
represents the velocity time dependence. 

3 Flow Computations and Results 

To carry out grid dependence investigations of the flow 
computations, several numerical meshes ranging from 29x24 
to 85 x 65 grid nodes were considered. For each grid, 
numerical computations were obtained using different values 
of the time step (5x 1 0 ~ 4 < / < 5 x 10"2 seconds), but keeping 
a chosen time step constant during the time marchmg process 
of the corresponding flow computation process. The distribu
tion of the grid nodes was non-uniform in both coordinate 
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i t =0.01 
At = 0.005 
At = 0.0005 
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Fig. 2(a) Influence of time step on predicted dimensions of separated 
flow regions 

0.25 time [si 
46.2 t*=Ut/S 

Fig. 2(b) Influence of grid size on predicted dimensions of separated 
flow regions 

directions allowing higher grid node concentrations in the 
region close to the step, along the shear region of the flow and 
close to both walls of the duct upstream and downstream of 
the step. The Reynolds number of 648 was chosen to check 
time and grid size dependence of the solutions. This flow turn
ed out to be most sensitive to the discretization sizes because 
the flow field possessed multiple recirculation regions for 
which a very fine grid distribution had to be chosen to ac
curately predict the flow properties. 

Figure 2(a) shows the time step dependence of the predicted 
length of the recirculating flow region attached to the step and 
the bottom channel wall. The numerical mesh comprised 
85 x 65 grid nodes in the x{ and the x2 directions, respectively. 
The inlet conditions given in the last section in point (/) were 
employed in this part of the work. A time step of 5 x 10"3 

proved to be small enough to compute sufficiently accurate 
the time variations of the flow. This finding was drawn from 
comparison in Fig. 2(a) where the reattachment lengths com
puted for different time steps At were compared with each 
other. The results clearly show that further refinements would 
not alter the predicted flow features. The sufficient agreement 
between the predictions with time steps of 5x lO~ 3 and 
5 x 10"4 seconds in the early stages of the flow development 
was maintained up to the establishment of the steady state 
flow pattern. 

Figure 2(b) shows the dependence of the separation lengths 
on the numerical grid size. The main separation region, 
attached to the step and the recirculation region at the top 
channel wall are shown together with the minimum value of 
the nondimensionalized stream function \p* in the main recir
culating flow region. This figure indicates that 85x65 grid 
notes are sufficient to capture the essential features of this 
flow. The physical information contained in Figs. 2(a) and 
2(b) are discussed in section 3.3. However, it can be conclud
ed that a constant time step Ar* equal to 0.9, together with a 
grid of 85x65 grid nodes, distributed as shown in Fig. 1, are 
appropriate to study accurately the flow under consideration. 
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3.1 Steady-State Flow Results. For steady backward-
facing flows, the recirculating flow regions behind the step 
and downstream on both sides of the channel walls were 
carefully investigated and their dimensions quantified with the 
help of the laser-Doppler anemometer described by Armaly et 
al. [5]. An overall representation of the longitudinal dimen
sions of the three separated flow regions, forming downstream 
of the step, is given in Fig. 3. Computational results, obtained 
with a computer program for predicting steady separated 
flows, are compared in Fig. 4 with experimental results and 
with predictions from other authors [19], [23]. For the 
Reynolds number range Res650, good agreement was ob
tained between experiments and predictions. At higher 
Reynolds numbers, Fig. 4 shows the agreement to be less 
good. The increased disagreement between experimental and 
numerical results at higher Reynolds numbers, i.e., in the 
range 650<Re< 1200 is caused by the occurrence of inherent 
three-dimensional effects in the experiments that reached the 
centre plane of the channel at Re ~ 800, see [5]. 

The steady state predictions were also performed with a first 
order upstream scheme and the results with this scheme 
showed that for Re < 400 accurate steady calculations can be 
obtained with coarse grids and with first order schemes. This 
finding can be explained by the presence of only one recircula
tion zone attached to the step wall and by the fact that when 
the flow is highly skewed with respect to the numerical mesh, 
the local Peclet numbers, Pe = AxU/v, are very small and vice-
versa and so numerical false diffusion is generally negligible. 
This is not the case for backward-facing step flows of higher 
Reynolds numbers since very complicated flow structures, in-

Fig. 5 Comparison between experimental and numerical results for 
flow field downstream of backward-facing step 

corporating multiple regions of flow separation, are present 
and first order solutions become strongly grid dependent, see 
[5, 24, 25]. Hence, higher order numerical schemes, as the 
13-point quadratic upstream scheme used in this study, are 
only required for backward-facing step flows of Re > 400. 

In the present investigations, the emphasis of the combined 
experimental and numerical investigation for steady 
backward-facing step flow was concentrated on the Reynolds 
number region where two-dimensional flows existed, i.e., 
Re < 650. In this region of Reynolds numbers good agreement 
was obtained in the entire flow field between numerical and 
experimental results. This is readily seen from Fig. 5, which 
shows a comparison between experimental and numerical 
results for Re = 389 obtained with the quadratic upstream 
weighted scheme. 

3.2 Unsteady Flow Results 

3.2.1 Results for Re = 10. Figure 6(a) shows the tem
poral variation of the reattachment length for a flow of 
Re= 10 obtained with the quadratic scheme and using 85 x 65 
grid points. The computational domain ends 6 step heights 
downstream of the step. The time step increment was chosen 
as 5xlO~ 3 seconds (t* =0.015). Only one recirculation zone 
was formed during the computational time which remained of 
constant length after ^ = 0.4 seconds, t* = l.ll and was at
tached to the upper corner of the step. Figure 6(b) shows the 
calculated streamlines for various times t. These were com
puted from the resultant velocity field and isostreamlines were 
obtained by a bi-cubic interpolation. This figure clearly shows 
that at such low Reynolds numbers the flow starts to separate 
at the bottom corner of the step and no additional separation 
occurs at the upper corner. The separation point lies at the 
backface of the step and it moves upward, towards the conjec
tured limit position at the sharp corner as the time is increased. 
This is in very good agreement with the results of [12]. The 
same principle finding was obtained with all three inlet flow 
conditions described in Section 2. 

3.2.2 Results for Re = 389. Experimental investigations, 
for Re = 389, under steady state flow conditions, revealed that 
no separation region at the wall opposite to the step existed. 
This can readily be deduced from Fig. 3, which indicates that 
multiple separation regions were only found for Re > 420. 
Observations suggested, however, that translational recir
culating flow regions are formed during the starting phase of 
the flow, that disappear by the time the steady state flow is 
reached. To study the development of the flow for Re < 420, 
unsteady flow calculations were performed for Re = 389 and 
for the inlet condition (/) in section 2, i.e., it was assumed that 
the inlet profile was fully developed and kept constant with 
time for / > 0 . This inlet condition is somewhat artificial but 
was meant to simulate an abruptly starting backward facing 
step flow. 

The temporal evolution of the dimensions of the recircula
tion zones in the region behind a two-dimensional backward-
facing step, formed on both walls of the channel, are shown in 
Fig. 1(a). The computational results show that the recircula
tion region on the wall opposite to the step starts to appear ap-
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Fig. 6(a) Predicted time variation of separation length of time-varying 
backward-facing step flow of Re = 10 
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Fig. 6(b) Variation of streamline pattern with time for Re = 10 

proximately at ? = 0.03 seconds after the inlet flow was started 
and it disappears at approximately t=0.70 seconds. This 
finding is in agreement with experimental studies of the steady 
flow for which the recirculation region at the top wall was not 
measured. Figure 7(a) also shows that a small separated 
region occurs at the lower corner of the step for some time 
after the starting motion. This will be discussed in the next 
subsection. 

Figure 7(b) provides information on the strength of the 
time dependent recirculation region at the wall opposite to the 
step showing the evolution with time of the sum of the recir
culating mass flow rate Q*. It shows that the recirculation 
region has a maximum of strength occurring at ? = 0.13 
seconds, and continuously decreases afterwards until the recir
culation zone disappears at approximately t-Q.l seconds. 

To provide further insight into the developing backward-
facing step flow the time dependence of the streamline pattern 
of the separation region attached to the step was analyzed. 
Streamlines were computed for various times, some of which 
are shown in Fig. 8. These provide a good picture of the 
developing flow close to the step. At first, the flow separation 
occurred at the bottom corner of the step and then a second 
separation region developed at the sharp edged upper corner 
of the backward-facing step. The upper separation bubble 
reattached at the downward facing wall of the step. Both 
separation regions grew with time and then merged to build a 
single recirculating flow region. This grew further up to its 
steady state size. At the same stage of the flow development, a 
second corner separation region developed and maintained up 
to f—oo. 

The flow visualization experiments of Honji [16], although 
only obtained for t*~2, showed separation at the corner of 
the step. At such a late time, the present predictions suggest 
that the bottom and top separation region at the step have 
already merged and only one separation region is seen. To in
vestigate experimentally the complete phenomena of the 
developing separation, it is necessary to record the flow infor
mation much earlier than Honji [16] did in his experiments. 

3.2.3 Results for Re = 648. The experimental investiga
tions of backward-facing step flows performed by [5] for 
steady flow conditions showed the occurrence of a recircula-
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Fig. 7(a) Variations of longitudinal dimensions of separation regions 
for Re = 389 
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Fig. 7(b) Strength of separated flow region opposite of step as a func
tion of time for Re = 389 

tion region on the channel wall opposite the step if the flow 
was laminar and the Reynolds number exceeded Re = 420. 
This additional recirculating flow region was also found using 
steady state flow calculations, see Fig. 4. 

To study the finite development of this flow, unsteady flow 
predictions were performed using 85 X 65 grid points. The 
13-point quadratic numerical scheme was employed to 
eliminate numerical false diffusion errors. The Courant 
number based on local velocity was always less than 1 with the 
exception of the expansion region of the plane jet emerging 
from the step lip where the maximum velocity gradients were 
located and the mesh size was of the order of one tenth of the 
step height. For the results presented here the three different 
time dependent inlet conditions were considered as given in 
Section 2. 

At t = 0 no flow passed the plane of the channel at the step. 
For t>0 the inlet velocity profile obtained with equation (6) 
corresponded to a fully developed laminar channel velocity 
profile. The inlet mean flow rate increased from zero (for 
/ = 0) to the mass flow rate corresponding to Re = 648. 

Using the time dependent inlet velocity profiles given by 
equation (6), a time dependent mass flow rate through the in
let channel plane located at the backward facing step was ob-
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Fig. 10 Prediction of longitudinal dimensions of separation regions 
behind the backward-facing step for Re = 648 

tained. Expressing this in terms of a time dependent Reynolds 
number of the inlet flow, yields the results given in Fig. 9. The 
results for the locations of detachment of reattachment ob
tained in the computations are indicated in Fig. 10 which 
allows the evolution of the longitudinal dimensions of the two 
separation zones to be deduced. 

Figure 10 shows that the second recirculation region op
posite to the step started to develop at a Reynolds number 
Re»410, which is in good agreement with the Reynolds 
number found for steady flow conditions beyond which a 
separation regions exists at the wall opposite to the step, e.g. 
see Armaly et al. [5]. Figure 11 shows that the results of the 
time dependent flow calculation agreed for f— oo with the 
results obtained from calculations using computer codes for 
steady state flow conditions. The agreement with experiments 
is slightly less due to occurrence of three-dimensional effects. 

The second inlet profile considered for unsteady flow 
calculations for Re = 648 correspond to case (Hi) of Section 2. 
Figure 12 shows the resulting inlet velocity profile at different 

8.2 10.2 

Y[mm] 

Fig. 12 Variation of inlet velocity profile with time for Re = 648 

times. For the final steady state flow conditions (/—• oo) the in
let profile becomes that of a fully developed laminar channel 
flow. 

The computational results are reflected in Figs. 13 and 14. 
For t = 0.0l the two separated flow regions at the backward 
face of the step are shown; they already had merged at 
t = 0.Q2. As time proceeded, the separation region attached to 
the step grew and a second bottom corner bubble developed 
together with a separation region at the wall opposite to the 
step. Both these secondary recirculation regions grew further, 
reached a maximum and than disappeared again, with the 
distinct phase difference between the growth and decay 
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Fig. 14 Variation of longitudinal dimensions of separated flow region 
behind the step for Re = 648 

processes. For a limited period of time a small additional recir
culating flow region appeared at the wall where the step is 
located. This is indicated in Fig. 13 which presents the 
longitudinal location of detachment and reattachment of the 
flow at the bottom wall as a function of time. 

It is interesting to note that all the essential features of the 
predicted flow are in good agreement with findings by Honji 
[16] who performed flow visualization studies of the starting 
flow downstream of a step at approximately the same 
Reynolds number. Hence, all the essential features of laminar 
time dependent backward-facing step flows can nowadays be 
predicted with sufficient accuracy to yield physically reliable 
flow information. 

4 Conclusions 
Steady and unsteady numerical predictions of laminar, 

viscous flow in a two-dimensional channel with sudden expan
sion in cross sectional area (expansion ratio 1:1.94) were per
formed and results were obtained for three Reynolds numbers, 
Re= 10, 389 and 648. The lowest Reynolds number flow was 
included to study the flow separation behind a step for flow 
conditions which previous studies have already dealt with. The 
numerical study orientated itself on experimental investiga
tions carried out for steady flows. There it was found that for 
Re < 420, no recirculation flow region existed on the wall op
posite to the step but recirculating flow region occurred for 
higher Reynolds numbers. This subdivision into a higher 
Reynolds number and a lower Reynolds number region 
resulted in the choice of the second and the third Reynolds 

number given above. The numerical results obtained in the 
present study allow the following conclusions to be drawn. 

For the flow at Re = 10, separation was observed at the back 
face of the step below the sharp top corner. As time pro
ceeded, the separation line moved upward reaching the top 
corner edge for ?—oo. 

Computations of the steady state flow fields obtained for 
t-* oo with a computation procedure for unsteady flows, were 
compared with steady state flow computation results. For 
both Reynolds numbers Re = 389 and Re = 648, the final 
longitudinal dimensions of the recirculating regions computed 
with time dependent inlet flow conditions show the same 
values as those computed for the corresponding inlet condi
tions for stationary flow fields. This indicated that the varia
tions of the starting conditions of the flow had no influence on 
the final, steady state flow field. 

For the flow field of Re = 389, good agreement was ob
tained between the steady state flow predictions and ex
perimental results. This indicated that the predictions were 
sufficiently free from numerical diffusion to draw physical in
formation from the final results. 

For Re = 389, computations were performed for the time 
variation of the separation region attached to the step. The 
computational results showed that the flow initially separates 
at the bottom corner of the step and a second separation 
region occurs at the top corner. As the time progresses, both 
recirculating flow regions merge and a single region of the 
recirculating flow develops. This region increases with time to 
reach the final steady state recirculation region predicted and 
measured for backward-facing step flows. 

During a transitional time period, for Re = 389, a separation 
region is computed at the wall opposite to the step. It occurs 
shortly after the flow is started and disappears before the final 
flow conditions for t~ oo are reached. 

The unsteady flow calculations performed for Re = 648, 
with increasing mass flow rate at the inlet plane, showed the 
starting of the second recirculating flow region at the wall op
posite to the step at about the Reynolds number where it is 
also obtained experimentally for the steady state flow condi
tions. After its initial occurrence, the longitudinal dimensions 
of the recirculating flow regions grow steadily, reaching a 
maximum and then decaying to a final length which agrees 
with the results from steady state predictions. 

The longitudinal dimensions of the second recirculating 
flow region at the wall opposite to the step are in satisfactory 
agreement with those obtained experimentally. Discrepancies 
might be due to three-dimensional effects occurring in the 
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flow. The quadratic upstream discretization scheme together 
with a first-order implicit temporal discretization showed to be 
a simple and accurate solution algorithm for unsteady recir
culating flows as long as very small time steps are used to 
decrease errors induced by the first-order temporal 
discretization. 

It is important to note that separation regions occur on both 
walls of the step during the transitional period of flow 
development. Some of these regions vanish for t^oo and, 
hence, the steady state flow does not reflect the complex flow 
structure that occurs during the phase of the starting step 
flow. 
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Vectorizable Implicit Algorithms for 
the Flux-Difference Split, Three-
Dimensional Navier-Stokes 
Equations 
The computational efficiency of four vectorizable implicit algorithms is assessed 
when applied to calculate steady-state solutions to the three-dimensional, incom
pressible Navier-Stokes equations in general coordinates. Two of these algorithms 
are characterized as hybrid schemes; that is, they combine some approximate fac
torization in two coordinate directions with relaxation in the remaining spatial direc
tion. The other two algorithms utilize an approximate factorization approach which 
yields two-factor algorithms for three-dimensional systems. All four algorithms are 
implemented in identical high-resolution upwind schemes for the flux-difference 
split Navier-Stokes equations. These highly nonlinear schemes are obtained by ex
tending an implicit Total Variation Diminishing (TVD) scheme recently developed 
for linear one-dimensional systems of hyperbolic conservation laws to the three-
dimensional Navier-Stokes equations. The computations of vortical flows over a 
sharp-edged, thin delta wing have been chosen as numerical test cases. The con
vergence performance of the algorithms is discussed, and the accuracy of the com
puted flow field results is assessed. The validity of the present results is 
demonstrated by comparisons with experimental data. 

Introduction 
Efficient means of computing steady-state solutions to the 

three-dimensional Navier-Stokes equations are continuously 
being sought. Among others, time-dependent methods, both 
explicit [1,2] and implicit [3-5], have been proposed. Implicit 
methods are generally regarded as being more suitable for 
"stiff" problems because of their better numerical stability 
properties (e.g., [6]). The "stiffness" of physical problems 
described by the time-dependent Navier-Stokes equations 
arises from the disparate characteristic speeds and/or length 
scales. 

Many of the current three-dimensional implicit 
Navier-Stokes solvers using general coordinates are inspired 
by the Approximate Factorization (AF) scheme by Pulliam 
and Steger [3]. To enhance its algorithmic and machine effi
ciency3, various modifications to it have been suggested. 
Pulliam and Chaussee [7] proposed a diagonalization tech
nique to decouple the system of governing equations. 

Part of this work was done while a National Research Council Postdoctoral 
Research Associate. 

Part of this work was done while an Associate Research Engineer affiliated 
with the University of Kansas, Lawrence, KS. 

3 Improved algorithmic efficiency means obtaining a steady-state solution 
within fewer time steps; improved machine efficiency means using less computer 
time per time step and per grid point. 

Contributed by the Fluids Engineering Division for publication in the JOUR
NAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering 
Division June 22, 1987. 

Thereby, the costly numerical inversion of block-tridiagonal 
matrices in each coordinate direction is replaced with the 
much simpler inversion of scalar tridiagonal matrices. Addi
tionally, each of these tridiagonal matrices can be decomposed 
into an upper and a lower triangular matrix according to the 
sign of their eigenvalues. That allows the use of a computa
tionally quite efficient LU-ADI algorithm [5] for the 
numerical inversion of the resulting six implicit factors for 
three-dimensional problems. However, the algorithmic effi
ciency is increased by going in the other direction; that is, to 
reduce the number of approximate factors to two [8,9] which 
yields less factorization error. As a side-effect, the lower 
number of implicit factors makes schemes with two implicit 
factors more accurate than three-dimensional AF schemes 
with three or more approximate factors. Because of these 
properties, only three-dimensional AF schemes with two ap
proximate factors are considered here. 

In continuation of a previous study [9] the effects of relaxa
tion and of different formulations for the approximate factors 
on the algorithmic and the machine efficiency of upwind 
schemes are investigated. The upwinding of the inviscid fluxes 
gives more freedom in devising implicit algorithms since it 
loads up the diagonals of the implicit factors [9,10]. This 
feature is used to construct three-dimensional AF schemes 
with just two implicit factors and hybrid schemes which com
bine AF in crossplanes with a nonlinear updating of the 
residual. While sweeping back and forth in the remaining 
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spatial direction, this resembles a symmetric planar Gauss-
Seidel (SPGS) relaxation. Upwinding also permits the genera
tion of implicit factors that alternatively possess block-
tridiagonal or block-bidiagonal structure. The inversion of 
block-bidiagonal matrices requires less arithmetic operations 
than that of block-bidiagonal matrices. However, the inver
sion of block-tridiagonal matrices is completely vectorizable, 
whereas the inversion algorithm for block-bidiagonal matrices 
is only vectorizable up to 55 percent. 

The relative merits of four different implicit algorithms are 
assessed when applied to compute vortical flows around a 
thin, sharp-edged delta wing as steady-state solutions to the 
three-dimensional, incompressible Navier-Stokes equations in 
curvilinear coordinates. The interest in low-speed flow 
calculations led to the decision to solve the incompressible 
Navier-Stokes equations. The compressible Navier-Stokes 
solvers are not very well suited for flows with M<0 .3 . Their 
algorithmic efficiency deteriorates considerably because the 
governing equations become increasingly stiff due to the grow
ing disparity of flow speed and speed of sound which goes to 
infinity for M—0. Furthermore, the accuracy of results com
puted with AF algorithms is questionable since the factoriza
tion errors increase unboundedly for decreasing Mach number 
(see, for instance, [11]). 

The governing equations are presented in the next section. 
In the third section, the first-order accurate upwinding of the 
inviscid fluxes using flux-difference splitting is described. The 
extension of this upwinding to second-order accuracy is given 
in the fourth section. After the implicit algorithms are ex
plained in detail, their algorithmic and machine efficiency is 
discussed along with the computed flow field results which are 
validated with experimental data. 

Governing Equations 

The Navier-Stokes equations for general, boundary-fitted 
coordinates are given in strong conservation law form: 

(Q/J), + ( £ - £ „ ) f + ( F - i v ) t + ( G _ G i ] ) i = o (2.1) 
with 

E-Ev 

F-Fv 

G-G„ 

and 

f.v/7 0 0 " 

tx'J iy/J i*/J 

VXZJ 1\y/J 1)Z/J 

Ec = (fiu,u2 +p,uv,uw)T 

Fc = (@v,uv,v2 +p,vw)T 

Gc = (Pw,uw,vw, w2 +p)T 

{E-EX 

{F-FX 

(G-GX 

(2.2) 

(2.3) 

where the Jacobian of the coordinate transformation is given 
by J - 1 =xi(yizri ~y^zX Note that all f =constant surfaces are 
assumed to be parallel to x = constant surfaces. This allows for 
a simplified treatment of wing and wing-body geometries 
while it does not impede the generality of either the three-
dimensional spatial differencing or of the implicit algorithms. 

As pointed out by Warming and Beam [6], the most effi
cient implicit algorithms are those which solve the complete set 
of governing equations simultaneously. That requires a cou
pled set of governing equations. For incompressible flow, the 
equation of continuity is decoupled from the equations of mo
tion. By defining a state vector 

Q=(p,u,v,w)T, 

an artificial time-derivative of the pressure is added to the 
equation of continuity; thus, the incompressible Navier-
Stokes equations are "recoupled," and they can be integrated 
like a conventional parabolic time-dependent system of equa
tions [11,12]. As the solution of equations (2.1) approaches 
asymptotically a steady-state, the artificial compressibility 
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time step size 
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vanishes and the incompressible Navier-Stokes equations are 
satisfied. The parameter /3 in equation (2.3) determines the 
amount of artificial compressibility allowed. Appropriate 
choices for /3 are discussed in the next section. 

The Cartesian velocities u, v, w are normalized with the 
freestream velocity V„. The Cartesian coordinates x,y, z, are 
made dimensionless with some problem-dependent 
characteristic length. The pressure is nondimensionalized as 
p = (P-P„)/pV„2. Since the density is simply a constant, it 
does not require any normalization. Assuming a constant 
viscosity, the viscous flux vectors are written like 

Evc = (Re'J)~,(0,2ux,uy + vx,uz + wx)
T,etc. (2.4) 

where the Cartesian derivatives are to be expanded in f, £, i\ 
space via chain rule relations. 

Flux-Difference Splitting 

The upwind differencing is implemented by adapting Roe's 
flux difference splitting [13] to incompressible flow since it 
preserves the strong conservation law form of equation (2.1). 
The widely used flux vector splitting is restricted to ideal gas 
flows because it either requires the inviscid fluxes being ex
pressed in terms of density, speed of sound and Mach number 
[14], or it maintains a strong conservation law form only when 
the flux vectors are homogeneous of degree one in the state 
vector [10]. Common to both splitting concepts is that they are 
devised for one-dimensional hyperbolic conservation laws, so 
that they cannot be directly applied to the three-dimensional 
Navier-Stokes equations. First, the Navier-Stokes equations 
have to be taken in the limit of an infinite Reynolds number 
which yields the hyperbolic Euler equations. Then, the three-
dimensional system of governing equations is spatially split in
to three quasi one-dimensional conservation laws: 

(Q/J)t+HB = Q (3.1) 

where 8 = f,£, or r/, and H=E,F, or G. In a Riemann problem 
genuinely discontinuous solutions are studied which suggests 
solving the conservation laws in their integral as opposed to 
their differential form: 

(I/TJ)AQ?+A,H=0 (1= identity matrix) (3.2) 

where A Q" = Q"+ ' - Q" , He± , / 2 = H( Ql± 1 / 2 ) , and 
A<0 =[(),+1/2-Of-i/zl/Afl with l=i, j , or k. The sliding 
averages Q and Q are defined as 

p (C+ 1/2)A9 

Q?=A6-[\ Q"dd' (3.3a) 
J ( f - 1/2)A0 

and 

Qf±i/2 = T- 1 J ' + T Q f ± 1 / 2 ^ ' (3.3Z?) 

The flux at the interface, (+ 1/2, separates the positive from 
the negative waves which can be mathematically expressed as: 

Hl+ W2=Ht + AHf+ l/2=He+1- AHt+1/2 (3.4) 

Upon inserting equation (3.4), equation (3.2) assumes 

(I/T i)AQ1+ AHf+ W2 + AH?_ m = 0 (3.5) 

Equation (3.5) describes the influence of a right traveling wave 
from the left and of a left traveling wave from the right on Q 
at the centroidal grid point t Assuming Q to be sufficiently 
differentiable in the space and time intervals Ad and T, respec
tively, Q can be developed in Taylor series within the "com
putational cell" Ad XT. Taking the effects of the coordinate 
transformation into account (which are encompassed in the 
metric coefficients in H), Q and Q can be expressed as: 

Q(d) = Q(6) + 0(Ax2,Ay2,Az2) (3.6a) 

Q(t) = Q(t) + 0(r2) (3.6b) 

Since the averages of Q approximate the actual function Q(0,t) 
with equal order of accuracy and 0(r) = 0(Ax, Ay, Az), the time 
averages Q can be replaced with Q without loss of accuracy. 

Following Roe [13], a mean value matrix £>(+V2 = 
D(Qt, Q[+,) is introduced with 

A+i/2^f+1/2 G = ^ + i / 2 (3-7a) 

D(Qe,Qt) = De (3.1b) 

which allows us to write (3.5) as 

[(I/TJ) - (Df+ i/2)"Al+1/2 + 0 , t x/2)"At_ U2]AQ" 

= (Di+ W2)"At+ l/2Q" - 0f_ 1/2)»A,_ W2Q" (3.8) 

where 

DLv2 = 0+ ~D-)"t±W2 = [R(K+ - A- ) L ] " p ± 1 / 2 (3.9) 

with A* =( IAI ±A)/2. Equation (3.8) gives an Euler-implicit 
time differencing of first-order accuracy, which suffices for 
steady state calculations. Because of condition (3.1a), the 
solution to (3.8) is conservative in space. It also approximates 
the same Riemann problem as in (3.1) or (3.2) since the eigen
values of £>"±i/2 represent the eigenvalues of £>"±1/2 (equation 
(3.1b)). The construction of D"±y2 is accomplished in two 
steps. First, the analytic Jacobian D = dH/dQ is formed. D is 
found to be a function of the metric coefficients, of the 
parameter /3, and of the state vector Q 

D = D(a,b,c,p,Q) 

where a, b, c are the metric quantities £X/J, %y/J, £ZJ/, etc. 
For D1+U2, the local values at+l/2, bt+W2, cf+l/2, and Qf'+i/2 
have to be fed into the structure of D. To maintain the conser
vative properties of (3.8), the metrics are differenced at each 
grid point using a weighted-average procedure [3,9,15]. For 
example, 

(U J V = KM/>0M*z) - CffA^M,*)], (3. io) 

where, for instance, the averaging operator ak working on Sjy 
is defined as 

Okfy = K V>*+1 + (V)*-1 ] / 2 (3-11) 

with 5jy = (yj+1-yj_l)/2. Condition (3.7a) is identically 
fulfilled, when the metrics and the quantities in the vector Q 
are computed from averages like Qj+U2 = (G/+i + GyV2- The 
eigenvalues of D are: 

A = diag(X1;\2,\3,X4) = diag((y-S,t /+S,t/ ,L0 (3.12) 

where U= au + bv + cw and S=[U2 + P(a2 + b2 + c2)]1/2. 

The stiffness of the conservation laws can be estimated by 
the ratio IAmaxAmin I. In order to prevent this ratio from 
assuming excessive values, large values of /3 which would 
result in a stiff system of equations should be avoided. Rizzi 
and Eriksson [16] proposed choosing |8 to be proportional to 
u2 + v2 + w2. For viscous flows, extended regions with small 
velocity components might occur (e.g., secondary vortices on 
delta wings). Proportionally, (3 will decrease in those regions 
too, thereby increasing the amount of artificial compressi
bility. This triggers an incompatibility in the governing equa
tions which results in meaningless solutions (a steady-state 
solution has never been obtained when /3 was proportional to 
u2 + v2 + w2). Choosing (3 to be 0(1) (or, simply setting it to 
unity), ensures that all eigenvalues are of the same order and 
that no problems in computing a solution to equation (3.10) 
due to stiffness are encountered. Once the eigenvalue matrix is 
split according to the sign of its diagonal entries, A * is easily 
computed following (3.9). This requires the matrices R and L, 
whose generalized formulation reads: 
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R = 

-/3S 0S 0 0 

«/3 + wX, d@ + u\2 ~b~ -c 

bfi+vX^ b& + v\2 a + c -c 

cfi+w\x C/3+M>X2 -b a + b 

1 

rather than by the one-sided, first-order accurate differences 
in (4.2). This is accomplished by defining 

(3-13) dw,„/d8 \lV2Ae = (wmil + 0.5<t>-jA^U2wmy 

- (>Vf-1 + O.50+if_, Af_ 1/2 vvm)" 

-x2//3 

- V / 3 

(M,+x,rf2)//3 

(M3 + M4)//3 

a 

a 

-2S2/k-ads 

-2S2/k-ad6 

b 

b 

2S2/k-bdi 

-bd6 

c 

c 

-cd5 

2S2/k- cd 

(3.14) 

(4.4a) 

where 

k=d+b+c 

a,b,c = a,b,c/(a2 + b2 + c2)W2 

d\ = fai ~r2 l)/k d2 = (rn -r22)/k 

d3=(rM~r2l)/k 

d<=d, + d-, 

dA = {rA2-r22)/k 

d6=d3+d4 

and quantities like rl{( = b~P + v\\) indicate elements of R in 
(3.14), and S=S(u,v,w,a,b,c), etc. 

High Resolution Scheme 

The scheme in equation (3.8) gives first-order accurate 
steady-state solutions. That means that the solutions are con
taminated with a considerable amount of numerical dissipa
tion. This artificial dissipation smears the details of the actual 
solution to the conservation laws in (3.1) or (3.2). The ac
curacy of the scheme in (3.8) is enhanced by extending it into a 
high resolution scheme. High resolution schemes are genuinely 
nonlinear schemes. They use variable difference stencils such 
that the schemes adapt to the local solution in order to give 
higher-order accurate solutions while still suppressing 
spurious oscillations in regions of rapid change in gradients 
(e.g., contact discontinuities). 

Here, high resolution schemes are presented which are ac
curate up to second-order. They are based on a recently 
developed implicit TVD scheme for linear one-dimensional 
hyperbolic conservation laws. For the nonlinear system case, a 
TVD scheme cannot be constructed since the quantity which 
might be subject to a TVD requirement is unknown [17,18]. 
For linear system cases, the quantities whose total variation 
can be forced to diminish in time are the characteristic 
variables: 

W=LQ (4.1) 

Using (4.1), the scheme in (3.8) is rewritten for constant R, L, 
and A as 

[ (1 /TJ) - \~At+1/2 + \+At+ 1 / 2 ] A < 

= ^ m A » + 1 / 2 < - X + A ( + 1 / 2 < (m = 1,2,3,4) (4.2) 

The formulation in (4.2) describes four scalar linear hyper
bolic conservation laws. The scheme in (4.2) is unconditionally 
TVD [18]. When w"m (0) is sufficiently differentiable, the local 
jumps in vv^are replaced with 

Af±1/2w2,= dw„/d0l?±, /2A0 (4.3) 

Reading equation (4.3) from right to left illustrates the 
aforementioned accuracy problem: the derivatives of wn

m have 
to be approximated by differences which have higher accuracy 

dwjddI?+ 1/2A0 = (wm f + , -O.50,„,f+, Ap+1/2wj" 

-(wmj-0.5<t>Z,,,Al+W2W,n)" 

with 

and 
n,l — 4>Vm,d 

(AAb) 

{A.5d) 

(&t-w2K</&i+w20±l for Al±l/2w»m*0 

0 for A e ± 1 / 2 < = 0 

(4.56) 

Note that the high resolution formulation applies only to v>"m 

not to vv^+'. Application to w?„+l would require beforehand 
knowledge about the function w%,+ l that is simply not 
available. Formulation (4.4) comprises various difference ap
proximations; the appropriate one is chosen by the TVD 
limiters </>*,. When all 4>m equal zero, (4.4) is identical with 
(4.3). For any other combination of values for <j>m, equations 
(4.4) resemble central, one-sided, or upwind biased differences 
of second-order accuracy. To determine the constraints on the 
TVD limiters, equations (4.4) are inserted in (4.2), and the 
resulting expressions at location I and C+ 1 are subtracted from 
each other. Using the triangle inequality, and after some sim
ple but lengthy algebra [15], the constraints are found to be 

<t>m,t = max(0,2 • min( 1 ,/•*_, ± l)) (4.6) 

In the actual computations a formulation of <j>(r) is chosen that 
is differentiable for ri, > > 0 

</>* . =max[0,2.min(7-,t,/(l +r,«,M»,f±i)] (4.7) 

Other formulations of <t>%j were used. As in other comparative 
studies (e.g., reference [19]) the effects of </>*, on the com
puted results are found to be marginal. In order to extend the 
high resolution scheme to the nonlinear system case, first the 
nonlinear scalar hyperbolic conservation laws for 
characteristic variables are considered 

[ ( 1 / T J ) - X , - f+1 /2^+1/2 + x m , f - l / 2 " f - l / 2 ] A < 

= K,t+WlU -0-5tt>m,f+l -*m,f)]Af+l/2< 

- X ; M / 2 [ l + 0 . 5 f c , r < ( „ 1 ) ] A M f l < (4.8) 

The extension of (4.8) to a conservative high resolution 
scheme for nonlinear systems of conservation laws is ac
complished by multiplying (4.8) from the left with the set of 
right eigenvectors R: 

W/TJ) - 01+1/2) - Al+1/2 + 0"t_ u2y A,_ W2]AQ" 
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= R1+1/2 f A,"+ , / 2 [ / - 0.5(*,"+, - *f
+)] 1 »Z?+ 1/2Af+ W2Q" 

- JR?_1 / 2(A f
+_1 / 2[ /+0.5(*r-* f t1)] l"Zv1 /2AM /2e" (4.9) 

where */i= diag(</)f,(/.2
±
)</>3±,(/>4

d)(,. 

As usual, the high resolution scheme in (4.9) is applied in
dependently in each coordinate direction for multi
dimensional flow problems, and the discrete expressions for 
the inviscid fluxes are summed up [15,17,18], 

Implicit Algorithms 

A first-order, Euler backward-time differencing for the 
three-dimensional Navier-Stokes equations is given by 

[(I/TJ) -(A-+ X)?+1/2 A/+ m + (A + + X)1_ 1/2A,._ 1 / 2 

- 0+ + Y)f+ 1/2Aj+1/2 + (B+ ?)]_ 1/2A,_ 1/2 

- (C- + Z)"k+ 1/2 A*+1/2 + (C+ + Z)'L 1/2 A*_ ,/2lAQ" 

= -RES(Q") (5.1) 

The solution is advanced in increments AQ" to compute 
steady-state solutions which are independent from the time-
step size [6]. The residual RES(Q") is the discrete representa
tion of the spatial derivatives in equations (2.1), evaluated at 
time level n, with the high resolution scheme applied to the in-
viscid fluxes. The viscous shear fluxes are centrally differenced 
in the usual manner (e.g., references [2-5,8,9,15]). The im
plicit formulation in (5.1) contains also the Jacobians of the 
viscous shear fluxes (i.e., X, Y, and Z, stemming from EV,FV, 
and Gv, respectively). These Jacobians are derived as, for in
stance, in Pulliam and Steger [3]. After having dropped all 
cross derivatives in the fluxes Ev, Fv, and G„, these "reduced" 
vectors are linearized by Taylor series. That produces the 
diagonal coefficient matrices 

X,Y, or Z=(Re-'-7)diag(0,w1,/K2,m3) (5.2) 

w i t h m , = 2 a 2 + 6 2 + c 2 , m2 = a2 + lb2 + c 2 , a n d 
m3 = a2 + b2 + 2c2. For example, to obtain Y, a = ^x/J, 
b = £y/l, and c=£.,/J. 

Considering equation (5.1) for all grid points yields a huge 
system of equations with an enormous (even though sparse) 
matrix whose bandwidth is also very large. Since it is unac-
ceptably expensive to invert the left-hand side (LHS) of (5.1) 
directly, a more economical relaxation or approximate fac
torization solution should be sought. To that end, four im
plicit algorithms are proposed in this paper. The first is a 
hybrid algorithm. Relaxation is used in one coordinate direc
tion in combination with approximate factorization in the re
maining two coordinate directions. The hybrid scheme avoids 
the T3 spatial splitting error incurred in the three-dimensional 
AF-method, which imposes a severe time-step limitation. Like 
a relaxation method, the hybrid scheme is unconditionally 
stable for the scalar equation but offers additionally the ad
vantage of being completely vectorizable when written as 

[M- (B~ + Y)]+ l/2AJ+1/2 + (5+ + Y)]_ W2Aj_ l/2) [M~' J 

[M-(C~ + Z)j?+1/2A/t+1/2 + (C+ + Z)»k_U2Ak_U2]AQ» 

= -RES(Q",Q"+ 1) (5.3) 
with 

M= I/TJ+ (A - + X)1+ U2 + (A++ X)l W2 

RES(Q",Q"+l) indicates the nonlinear updating of the 
residual while sweeping back and forth in f-direction. Since 
each factor in (5.3) has the same block-tridiagonal structure as 
in a conventional AF algorithm, let this algorithm be termed 
as AF-SPGS to distinguish it from the second algorithm, 

which is obtained by reordering the Jacobians in (5.3) such 
that each implicit factor contains only the positive or the 
negative Jacobians 

[M-0- + iO;+i/2A,+ , / 2 - ( C - +Z)2+,/2A*+1/2][A/-1] 

[M+ ( J + + Y)1_ 1/2A,_ 1/2 + (C+ + Z)"k_ l/2Ak_ l/2\AQ" 

= -RES(Q«,Q"+ 1) (5.4) 
This formulation leads to an approximate LU factorization of 
the LHS combined with relaxation. Let this approach be 
termed LU-SPGS. The inversion of the upper (first implicit 
factor) and lower (second implicit factor) block-triangular 
matrices requires only 37 percent of the arithmetic operations 
which are necessary for the inversion of the block-tridiagonal 
matrices in (5.3). The drawback of the LU-SPGS is that only 
55 percent of these operations can be vectorized, compared 
with 100 percent for the AF-SPGS method. 

Both hybrid algorithms are easily convertible into time-
dependent methods which exclusively use approximate fac
torization, but which still avoid the r3 spatial splitting error as 
in conventional AF methods, since they use only two approx
imate factors. Reassigning the matrices (A± + X)iTl/2 in (5.3) 
yields a second approximate LU factorization 

1(I/TJ)-(A- +*)?+1/2A,+ 1 / 2- ( f i - + Y)'j+W2Aj+m 

+ 0+ + Y)^w2Aj_l/2] 

{(I/TJ) + {A + + X)l 1/2A,_ 1 / 2 - (C- + Z)U ,/2A*+1/2 

+ (C+ +Z)»k_W2Ak_W2]AQ«= -(J/rJ) .RES(Q") (5.5) 

Each implicit factor in (5.5) is composed of a block-
tridiagonal matrix like in a conventional AF scheme plus a 
super (first implicit factor) or a sub (second implicit factor) 
block-diagonal matrix, which is characteristic for an approx
imate LU factorization. Hence, the algorithm in (5.5) is 
labeled AF-LU. 

An analogous reassignment of the matrices (A* + X)iT 1/2 in 
(5.4) yields a third approximate LU factorization 

VJ/TJ)-(A-+ X)1+ 1 /2A ;+1/2 -(B- + Y)]+ W2AJ+1/2 

— (C + Z)k+i/2Ak+l/2] 

[{I/TJ) + (A++ Xfi- i/2A,_ 1/2 + {B+ + Y)]_ 1 / 2 V 1 / 2 

+ (C+ + Z)V1/2A*-1/2]AQ" = - ( 7 / T / ) . R E S ( Q » ) (5.6) 

In this approach, termed LU-LU, the first (second) implicit 
factor has an upper (a lower) block-triangular structure 
similar to the LU-SPGS method. The arithmetic operation 
counts for the inversion of the implicit factors in the AF-SPGS 
and in the AF-LU algorithms on one hand, and of those in the 
LU-SPGS and LU-LU algorithms on the other hand, are iden
tical. The difference between the respective hybrid and time-
accurate methods lies in the updating of the residuals. The 
time-dependent methods, AF-LU and LU-LU, require two 
sweeps through the integration domain to advance the solu
tion from the nth to the (n+ l ) t h time level. The hybrid 
algorithms need only one sweep since they update the residual 
nonlinearly. 

Computational Integration Domain 

The outer contour of the finite, three-dimensional integra
tion domain around a sharp-edged delta wing (AR = 1, t/c = 0) 
as shown in Fig. 1 is described by a half-hemispherical cylinder 
with the radius R/c = 2. The C-H-type grids used in the flow 
field computations reported below, extend from one root 
chord upstream of the apex to one root chord aft of the trail
ing edge. They slice the integration domain into 66 crossplanes 
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Fig. 1 Partial view of the three-dimensional integration domain around 
a slender delta wing 

which are perpendicular to the longitudinal axis of the wing, 
with some clustering of the planes in the apex and trailing edge 
region (minimum spacing: 0.00625 root chords). In these 
cross-sections, C-type grids are generated from solutions to 
elliptic systems [20]. The coarse and the medium grids have 51 
grid points in circumferential (£) direction; the fine grid has 
101 grid points in ^-direction. A stronger coordinate stretching 
in ^-direction for the medium and fine grid rather than for the 
coarse grid, gives a finer resolution of the boundary-layer type 
flow along the wing surface. This is reflected by a maximum 
spacing in redirection between the wing surface and the first TJ-
constant plane encompassing the wing which is 0.0014 and 
0.00025 root chord for the coarse grid and the other two, 
respectively. 

Boundary Conditions 

Unknown values of Q" along the boundaries are updated 
explicitly, and AQ" is set to zero. The boundary conditions 
are: freestream conditions along the outer boundary except 
for the outflow cross-section, reflection conditions along the 
symmetry plane perpendicular to the wind, and no-slip condi
tions along the wing surface, where the normal gradient of 
pressure is assumed to vanish. Flow field values along the 
branch cut in the wake region are obtained by averaging ex
trapolates from above and below. The values at the outflow 
cross-section are computed by first-order extrapolation. The 
effect of the position of the outflow crossplane on the flow 
over the wing was assessed by expanding the wake region up to 
three root chords using additional crossplanes. No discernible 
differences in the pressure and velocity fields in the wing area 
were detected. 

The limiters <£*, along all boundaries are set to zero, cor
responding to a zeroth-order extrapolation. The initial condi
tions consist of the freestream values. 

Results 

The convergence performance of the four implicit 
algorithms is compared for steady-state calculations of incom
pressible, laminar (Re = 0.9 million) vortical flows around a 
sharp-edge delta wing. 

The surface pressure distributions in Fig. 2 show com
parisons between experimental data by Hummel for a similar 
wing [21] and three sets of computational results. The angle of 
attack is 20.5 degrees, and the comparison is made for 
x/c = 0.3, 0.5, 0.7, and 0.9. There are two fine grid computa
tions with first-order (Fig. 2(a)) and second-order (Fig. 2(b)) 
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0 .23 .SO .75 t .00 

Fig. 2 Computed (lines) and measured (symbols) surface pressure 
coefficient distributions, AR = 1, a = 20.5 degrees, Re = 0.9 million, 
laminar flow 

accurate upwind differencing, and one coarse grid calculation 
with second-order accurate up winding (Fig. 2(c)). The effect 
of the secondary vortex on the pressure distribution is clearly 
indicated in the experiment and in the high resolution calcula
tions. In the first-order accurate results neither the position 
nor the strength of the primary and secondary vortices is 
predicted properly at any root chord station. Crossflow veloci
ty vector plots (not shown here) demonstrate that there is a 
weak secondary vortex in the first-order accurate calculations 
(cf. reference [9]), and secondary and tertiary vortices in the 
high resolution computations. The primary vortex in Fig. 2(c) 
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\ .0494 

SEMISPAN 

Fig. 3 Computed (lines) and measured (symbols) surface pressure 
coefficient distributions, AR = 1, « = 20.5, Re = 0.9 million, flow: transi
tional in the computation and nominally laminar in the experiment 

\ .0494 — 

Y/C 

Fig. 4 Total pressure distribution in crossplane at x/c = 0.7 for a coarse 
grid calculation with up to second-order accurate upwinding, AR = 1, 
a = 20.5 degrees, Re = 0.9 million, laminar flow 

is predicted in acceptable agreement with the fine grid result in 
Fig. 2(b), but the secondary and tertiary vortices are not cap
tured. That indicates the necessity to cluster coordinate sur
faces enveloping the wing, close to the wing. The grid fineness 
in the circumferential direction appears to be less important. 
The surface pressure distributions are always smooth except 
for a small suction spike close to the leading edge. Additional 
computations on the medium grid confirmed the above 
statements concerning the sensitivity of the flow field results 
toward the resolution of the flow by the grid in circumferential 
and radial direction. When compared to the experiment, the 
strength of the secondary vortex is overpredicted for x/c> 0.7 
in Fig. 2(b). The magnitude of this disagreement is reduced 
when a laminar/turbulent transition is modeled in the com
putation. The calculated surface pressure distributions in Fig. 

Fig. S Total pressure distribution in crossplane at x/c = 0.7 for a fine 
grid calculation with up to second-order accurate upwinding, AR = 1, 
« = 20.5 degrees, Re = 0.9 million, laminar flow 

3 agree much better for x/c > 0.7 with the experiment than in 
Fig. 2. In these transitional calculations, the flow is assumed 
to be laminar along the windward surface and up to x/c = 0.6 
along the leeward surface, and turbulent along the upper sur
face for x/c>0.6 and in the wake. The eddy viscosity was 
calculated using a modified Baldwin-Lomax [22] turbulence 
model, which included, among others, the modifications as 
proposed by Degani and Schiff [23]. 

The contours of constant total pressure coefficient in Figs. 4 
and 5 show the crossflow at x/c = Q.l root chord station. The 
results in Fig. 4 (5) are computed with the up to second-order 
accurate upwind differencing on a coarse (fine) grid. The 
primary vortices in Figs. 4(a) and 5(a) appear to be quite 
similar and only slightly affected by the spatial resolution of 
the boundary-layer-like flow along the wing surface. 
However, a clearly developed secondary vortex as in Fig. 5(b) 
occurs only in the medium and fine grid calculations. The 
blowups in Figs. 4(b) and 5(b) exhibit small scale oscillations 
along the inner side of the shear layer that emanates from the 
leading edge and rolls up into the primary vortex. They are 
easily explained when the shear layer is considered to be a 
smeared vortex sheet (i.e., a smeared contact discontinuity) 
that is not aligned with the grid. Under such circumstances, 
the accuracy of high resolution schemes, which are assembled 
via summation of uni-dimensional discretizations, often 
deteriorates since they are derived with the assumption that 
the waves are propagated parallel to the coordinate directions 
(see reference [24]). 

Figure 6 documents the numerical efficiency of the four im
plicit algorithms for the three cases shown in Figs. 2. All com
putations are carried out in half-precision arithmetic (i.e., 
seven significant decimal places) on the CDC CYBER 205 vec
tor computers at NASA Langley (2-pipeline model) and at 
NASA Ames (4-pipeline model). All steady-state solutions are 
calculated with ,6=1 and with local time stepping (CFL= 10). 
The L2-norms of all residuals are driven to machine zero with 
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Fig. 6 Convergence summary for calculations of a vortical flow around 
a sharp-edged delta wing, AR = 1, « = 20.5 degrees, Re = 0.9 million, 
laminar flow 

AF-SPGS 
LU-SPGS 
AF-LU 

— LU-LU 

0 150 300 450 600 0 150 500 450 600 

ITERATIONS ITERATIONS 

Fig. 6 Concluded 

an asymptotic spectral radius of 0.973 (Fig. 6(a)), 0.977 (Fig. 
6(6)), and 0.983 (Fig. 6(c)). The L2-norms are scaled with the 
L2-norm after the first complete update of the residual, which 
is about 10"2. The time-dependent methods, AF-LU and LU
LU, converge within fewer iterations to an asymptotic steady-
state since they reduce the L2-norm monotonously unlike their 
corresponding hybrid counterparts, AF-SPGS and LU-SPGS. 

Table 1 documents the computational efficiency of the four 
implicit algorithms. The Central Processor Unit (CPU) time 
per grid point and per iteration or time step is given for the 
CYBER 205 at NASA Ames. Multiplying these data by 1.4 
gives approximately the corresponding values on the CYBER 
205 at NASA Langley. The architecture of the CYBER 205 is 
such that it performs the better, the longer the vectors are. 
This is elucidated by comparing the computational efficiency 
of the high resolution calculations on the coarse and on a fine 
grid. On the coarse grid (i.e., shorter vectors), the LU-SPGS 
and LU-LU algorithms fare better than the AF-SPGS and AF-

O computation (CL0 = 0) 

• experiment (CL0 =-0.08) 

O O o 

o • 

* I I I I I I 
10 15 20 25 30 35 40 

ALPHA (DEC) 

Fig. 7 Variation of lift with angle of attack, AR = 1, Re = 0.9 million, 
laminar flow 

Table 1 CPU time per grid point and per time step or itera
tion (in microseconds) 

AF-SPGS 
LU-SPGS 
AF-LU 
LU-LU 

Coarse grid 
2nd-order 

42.8 
40.6 
43.0 
40.6 

Fine grid 
2nd-order 

37.1 
39.4 
37.6 
40.0 

Fine grid 
lst-order 

27.1 
29.5 
29.5 
32.1 

LU algorithms because they require fewer arithmetic opera
tions. However, on the fine grid (i.e., longer vectors), the LU-
SPGS and the LU-LU algorithms are slower than the AF-
SPGS and AF-LU algorithms because of their lower degree of 
vectorizability. The first-order accurate computations on the 
fine grid demonstrate that they require about 25 to 35 percent 
less CPU time than the high resolution computations. Further
more, the AF-LU and LU-LU are slower than both hybrid 
schemes since they require two sweeps through the integration 
domain for one update of the residual. That necessitates that 
three of the Jacobians on their LHSs have to be doubly com
puted. That disadvantage loses its impact for the high resolu
tion computation where those Jacobians have to be computed 
twice anyway (once for the LHS, and once for the residual). 

All four implicit algorithms maintain their performance for 
all fine grid computations in Fig. 7 with the high resolution 
scheme and with unchanged values for /3 and CFL. The com
puted linear lift is systematically higher than the measured 
linear lift due to the different wing geometries: the cambered 
wind tunnel model produces negative lift at zero angle of at
tack. The differences in the calculated and hie-'measured 
nonlinear lift are attributed to the fact that the flow is partly 
turbulent in the experiment but assumed to be fully laminar in 
the computations (cf. measured and calculated loads in Figs. 
2b and 3). Maximum lift is predicted at the same angle of at
tack as in the experiment [21], where the peak in lift is 
associated with the commencement of vortex breakdown at 
the trailing edge. Inspection of the flow field for a = 32.5 
degrees reveals that a bubble-type vortex breakdown close to 
the trailing edge is computed as a steady-state solution to the 
Navier-Stokes equations. 

Conclusions 

Based on flux-difference splitting, a high resolution scheme 
has been formulated for efficient calculations of steady-state 
solutions to the three-dimensional, incompressible 
Navier-Stokes equations in curvilinear coordinates. Four dif-
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ferent implicit algorithms have been implemented in that 
scheme. The AF-SPGS algorithm combines a symmetric 
planar Gauss-Seidel (SPGS) relaxation in one coordinate 
direction with approximate factorization (AF) in the other two 
coordinate directions, where each implicit factor has block-
tridiagonal structure. The LU-SPGS method combines SPGS 
with an approximate LU factorization (LU) which, gives im
plicit factors with block-triangular structure. These hybrid 
schemes are easily converted into corresponding fully time-
dependent methods, AF-LU and LU-LU. A comparative 
study of these algorithms reveals that their numerical efficien
cy is about the same. As long as a supercomputer is used 
whose performance does not heavily depend on vector lengths, 
the LU-SPGS and LU-LU algorithms are faster than their 
counterparts, AF-SPGS and AF-LU, because the inversion of 
their implicit factors requires much less arithmetic operations. 
Because these operations are only up to 55 percent vec-
torizable (as opposed to 100 percent for the AF-SPGS and AF-
LU methods), they lose that advantage when run on vector 
computers whose performance improves with growing vector 
lengths, like the CDC CYBER 205. 

It is planned to extend this comparative study by investiga
tions of methods which exploit even more the speed capability 
of supercomputers (e.g., diagonalized, three-dimensional AF 
methods) or which make better use of the memory capacity of 
supercomputers. The latter can be accomplished by imple
menting elements of direct methods in the hybrid methods, 
which is currently being investigated. 
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Consistent Boundary Conditions 
for Reduced Navier-Stokes (RNS) 
Scheme Applied to Three-
Dimensionai Viscous Flows 
A consistent and efficient set of boundary conditions are developed for the multi-
sweep space marching pressure-elliptic Reduced Navier-Stokes (RNS) scheme as ap
plied for three-dimensional internal viscous flow problems. No-slip boundary condi
tions are directly imposed on the solid walls. There is no iteration procedure re
quired in the cross plane to ensure mass conservation across each marching plane. 
The finite difference equations forming the coefficient matrix are ordered such that 
the surface normal velocity is specified on all the solid walls; unlike external flows, a 
pressure boundary condition in the cross plane is not required. Since continuity is 
directly satisfied at all points in the flow domain, the first order momentum equa
tions can be solved directly for the pressure without the need for a Poisson pressure 
correction equation. The procedure developed herein can also be applied with 
periodic boundary conditions. The analysis is given for general compressible flows. 
Incompressible flow solutions are obtained, for straight and curved ducts of square 
cross section, to validate the procedure. The solutions of these test cases are used to 
demonstrate the applicability of the RNS scheme, with the improved boundary con
ditions, for internal flows with strong interaction as would be encountered in ducts 
and turbomachinery geometries. 

Introduction 
The flow through advanced highly loaded turbomachinery 

blade rows is characterized by extensive regions of strong 
three-dimensional viscous-inviscid interaction. To simulate 
this important pressure interaction, numerical melthods that 
can couple the viscous and inviscid regions must be employed. 
In addition, efficiency and accuracy of the numerical 
algorithm become important considerations if these methods 
are to be useful in the aerodynamic design process. 

A number of different approaches have been considered for 
the simulation of strong viscous-inviscid interaction in internal 
flows. Conventional full Navier-Stokes (N-S) methods, which 
solve the full N-S equations throughout the flow field, have 
been successfully used to analyze three-dimensional inter
acting flows in turbomachinery blade passages [1, 2]. 
However, these methods do not exploit the asymptotic 
behavior of the equations at the large Reynolds numbers 
typically encountered in turbomachinery flows. Consequently, 
these medhods require large computer storage and run times. 
A recently developed method in this category [1] requires 18 hr 
of CPU time on a VAX 11/780 computer for the prediction of 
end-wall flow in a cascade on a relatively coarse grid of 53 by 
31 by 10 nodes. 

Contributed by the Fluids Engineering Division for publication in the JOUR
NAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engifieering 
Division September 24, 1987. 

Another approach is interacting boundary layer theory. 
This has been used by a number of researchers [3 to 7] for two-
dimensonal applications, where the interaction of the inviscid 
flow on the boundary layer is coupled through the injection 
and surface boundary conditions for the inviscid and bound
ary layer analysis respectively. These methods are potentially 
very efficient; however, the evaluation of the injection condi
tion or inviscid displacement body (due to the viscous effects), 
which alters the inviscid flow, can become rather involved for 
complex three-dimensional flows. Approximate methods nor
mally used to evaluate this effect, such as linearized small 
disturbance theory, can result in considerable error. In addi
tion, the approximation of zero normal pressure gradient 
through the boundary layer might not be appropriate for tur
bulent flows with strong pressure interaction [16]. 

Methods that use space marching with an approximate form 
of the steady N-S equations (single-pass and multipass 
marching methods) have been considered for a number of 
years to predict flows through curved ducts and tur
bomachinery blade cascades [8 to 11]. Single pass marching 
can be used for configurations where the flow is of initial 
value character, but multiple pass procedures are required for 
elliptic flows. When applied to elliptic flows, these formula
tions have generally introduced a Poisson equation for 
pressure to correct an initially assumed pressure field. This is 
required in lieu of the continuity equation, which is not 
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satisfied explicitly, in order to ensure global mass conserva
tion. These methods are called partially parabolic or semi-
elliptic methods to distinguish them from the full N-S 
schemes. Although these methods result in less computing 
time than full N-S methods, the solution of the Poisson equa
tion, using conventional methods, still requires large computer 
run times for most cases. In addition, due to the uncoupled 
nature of the pressure correction, which is a necessity of the 
formulation, extremely large under-relaxation is required in 
high subsonic and transonic flow regions. This slows down the 
convergence of the iteraction procedure and thereby further 
increases the run time. 

A method that combines the asymptotic treatment of in
teracting boundary layer theory and the accurate interaction 
simulation of the full Navier-Stokes methods is the Reduced 
Navier-Stokes (RNS) formulation. This scheme was originally 
developed for external flows [12 to 18] and later formulated 
for internal flows [19]. The solution procedure and the boun
dary conditions have been modified in this study to make the 
scheme more efficient for both two- and three-dimensional 
flows with strong interaction. As described in earlier 
references [14 to 19], the system of equations resulting in the 
RNS formulation is similar to that of the partially parabolic 
scheme in that stream wise diffusion effect is neglected. 
However, the elliptic effect or upstream influence in strongly 
interacting flows is simulated by a characteristic treament of 
the streamwise pressure gradient. The solution procedure is 
therefore very much different, and more direct, as compared 
to that of partially parabolic schemes. The equations are 
solved by a relaxation procedure with full coupling between 
pressure and velocities and without the need for a Poisson 
equation for the pressure correction. Detailed analysis of the 
RNS scheme and solutions for laminar, turbulent, subsonic, 
transonic, and supersonic flow regimes for a variety of exter
nal flow configurations are given in references [12 to 18]. Ap
plication of the scheme for internal flow and some preliminary 
results for two- and three-dimensional internal flows were 
presented in reference [19]. As pointed out in these references, 
the procedure is applicable to both inviscid and viscous flow 
and can be classified somewhat between interacting boundary 
layer theory and full Navier-Stokes solvers. 

A detailed description and analysis of the RNS scheme as 
applicable to two-dimensional external flows are given in 
references [13 to 18]. Details of various stages of the evolution 
of the scheme leading to its present form are also given in 
references [13, 15 to 17]. For the sake of completeness, some 
of the analysis is repeated here. 

The RNS equations were first considered as single sweep or 
PNS (Parabolized Navier-Stokes) marching procedures for 
supersonic flows. The first application was for hypersonic 
flow (20) where the contribution of the streamwise pressure 
gradient in the corresponding momentum equation is negligi
ble and can therefore be neglected. The equations are 
mathematically parabolic, upstream influence is negligible, 
and an exact solution is obtained in a single marching sweep. 
For lower supersonic mach numbers, where the influence of 
the streamwise pressure gradient is not negligible, an elliptic 
effect associated with pressure interaction through the sub
sonic portion of the boundary layer introduces upstream in
fluence [21, 22]. A single sweep methodology then leads to an 
ill-posed initial value problem and gives rise to exponentially 
growing departure solutions for a marching step size, A£, less 
than (A£)min where (A£)min is proportional to the extent of the 
subsonic portion of the flow in the normal (cross stream) 
direction [14 and 23]. To suppress this so-called departure ef
fect that reflects the boundary value character of the problem, 
researchers have used a variety of approximation techniques 
[20 to 24] to simulate the elliptic effect of the streamwise 
pressure gradient term. 

In the present RNS procedure, the streamwise pressure gra
dient term P { is split according to its characteristic behavior so 
that 

PE =«(/>{)„+ (1-co) (7>e)e 

This follows the eignevalue analysis of Vigneron et al. [25], 
where 0 < co(M) < comax is a function of local Mach number M 
and 

oJmax=|7MV(l + ( 7 - l ) M M ] m i n 

As mentioned in references [18 and 19], the portion w(p£)h, 
which is "backward" differenced during discretization, 
represents the "hyperbolic" or marching part of P f and the 
term (l-co)(P f) e represents the "elliptic" or relaxation con
tribution that is "forward" differenced. Note that for incom
pressible flow, since o(0) = 0, the entire P% contribution is 
elliptic. "Forward" differencing of ( l-co)(P{) c introduces 
upstream influence in the computational domain. This 
removes the ill-posedness found in the single sweep initial 
value formulation. Due to the forward differencing, the solu
tion procedure requires multiple sweep marching or relaxa
tion. The above treatment of the streamwise pressure gradient, 
with multiple sweep relaxation, leads to consistent (arbitrary 
A£) and departure free (A£—0) solutions for the entire range 
of incompressible to supersonic Mach numbers. Significantly, 
only the pressure (and possibly the axial velocity in the limited 
regions of reversed flow only) need to be stored. This results 
in, among, other advantages, a significant reduction in storage 
requirement over conventional N-S methods. 

In the present study, a new consistent solution procedure is 
formulated, using the RNS Scheme, for three- and two-
dimensional flow problems. The treatment of boundary con
ditions has been significantly modified, compared to the 
earlier procedure [19], to make the solution procedure more 
efficient and accurate. The application of zero injection or 
solid wall boundary conditions in the cross-plane is more 
direct in this study than in that of reference [19]. The pro
cedure is developed for arbitrary compressible flow, but only 
incompressible solutions are obtained for developing flow in 
three-dimensional straight and curved ducts of square cross 
section. These solutions are compared with available ex
perimental data and computed results. 

Governing Equations 

The governing equations are written in a general curvilinear 
coordinate system (£, •q, and f) in terms of the primitive 
variables (u, v, w, p). The momentum equations are then rear
ranged to reflect the momentum balance in the directions of 
the contravariant velocity components (£/, V, and W). This re
quires the appropriate combination of the Cartesian compo
nent momentum equations after transformation into the £, t], 
and f coordinate system. For example, the momentum equa
tion in the U direction is written as %x (x-momentum) + tiy(y-
momentum) + f ? (z-momentum) (26). The final equations are 
given in the following matrix form. 

Continuity and Momentum: 

d^E+d^+d^G^d^R + d^S + dt-T+K 

where 

" PU ' 

1 PUU 
E= 

J pUV 

pUW 
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F= 

G = 

R = 

T= 

K = 

pV 

pVU 

pVV 

Pvw 

pW 

pWU 

pWV 

pWW 

W + W + W 

frx'+frS + W 
z' z 

0 

W + W + ^V 
VxTx"+Vy'ry''+VzTz'

1 

0 

W + W + W 

ptGip-gHpi~gi-"pri-g^pi 

The terms r ^ , r_,,5, etc. appearing in the column vectors R, 
S, T, and K are explained in detail in Appendix A. The 
velocities U, V, and W axe the contra variant components; all 
the shear stresses, as shown as Appendix A, can be expressed 
in terms of these components. Since one of the coordinates ({) 
represents the marching direction, it has been found that the 
equations expressed in this form enhance the stability of the 
numerical scheme. In addition, the system of equations in this 
form can be easily verified for an orthogonal coordinate 
system. For the sample problems considered in this study, an 
orthogonal (curvelinear) coordinate system is specified. For 
the present formulation, adiabatic (wall) conditions are 
assumed and with a Prandtl number of unity, a simplified 
energy equation results; i.e., total enthalpy is constant. The 
same algorithm can also be used for nonadiabatic wall condi
tions and Prandtl numbers different from unity. The energy 
equation written in terms of stagnation enthalpy is only weak
ly coupled with the remainder of the equations for low speed 
and even moderate supersonic flows. Therefore, the energy 
equation can be solved in an uncoupled manner to update the 
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Fig. 1 Discretization in the ^-direction 
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Fig. 2 Discretization in the cross-plane 

stagnation enthalpy at each marching location. To close the 
system, an equation of statep = pRTand a relation for viscosi
ty, n = ix(T), are required for compressible flows. 

In all of the momentum equations, the diffusion terms in 
the streamwise direction are neglected according to the RNS 
approximation. These terms are negligible for the coordinate 
system specified herein so that the RNS system closely approx
imates the full N-S equations. The flow Reynolds number is 
based on the inlet uniform velocity and the inlet hydraulic 
diameter of the duct. The pressure is nondimensionalized with 
the inlet dynamic head. 

Discretization 

The discretization of the governing equations is illustrated 
in Figs. 1 and 2. In the marching (?) direction the equations 

308/ Vol. 110, SEPTEMBER 1988 Transactions of the ASME 
Downloaded 02 Jun 2010 to 171.66.16.92. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



"rtsw "flS "* ft§e flw ftP A?, flnw fln .ne 
Aik Aik Alk Aik v

Alk Alk. Alk v
Alk Aik 

J - 2 

"jk "jk AJK A V 

Fig. 3 Coefficient matrix for nine-point formulation 

are discretized at (/), the velocity node points. In the cross-
plane, the continuity, streamwise momentum and the two nor
mal momentum equations are discretized at © , (£), (g), and 
(J), respectively. All of the convective terms in the marching 
direction are upwind differenced. Both first-order (two point) 
and second-order (three point) accurate upwind differencing 
schemes are considered. As discussed earlier, the streamwise 
pressure gradient, P( is differenced as: 

<T P"~ -1 _ pn 

-?,• 
+ (APj) VI 

(r P" — P" i "i 

where the subscript / is a modified index for pressure in the in
direction (see Fig. 1) and n is the current marching (global) 
sweep. The terms (Ap{ )f and (Ap{ )6 are additional correction 
terms to produce second-order accuracy in the forward and 
backward directions respectively. These terms are given by: 

1 
(AP t)/ = 

and 

(AP t)6 = 

where 

ff/(l+0/) (£,+ i - £ , ) 
•[(l+«V)Pf+i Pi+2 •°fPi 

1 

<7i(l+ff(,)(£/-£/-l) 
[a6A"-(l + ^ )P" - i+P / -2 ] 

<V = ( f / + i - f y ) / ( f / - € / - i ) 
ff6 = ( f , - , - f , - 2 ) / t t / - * / - i ) 

For first order accuracy the terms (A/?{)y and (A/?g)6 are 
neglected. 

The discretization forp{ requires that the unknown pressure 
Pi at the marching location i, is staggered at a distance 
(1 -<o)A£ upstream of velocity w,-, u,-, and w,-. The pressure at 
the grid point /' is given by: 

P/ = w/+iP/ + (1-w,>i)/>/+i 
The discretization of all derivatives in the t] and f cross flow 
directions is done using the second-order accurate central dif
ferencing except for one of the viscous terms in each of the 
normal momentum equations. These terms are the diffusion 
terms in the same direction as the momentum direction, i.e., 
the second derivative with respect to r/ in the ?j-momentum 
equation (92 V/d-q2) and the corresponding term (d2 W/d£2) in 

K + 1 • 

K - 1 • 

J + 1 J + 2 

Ane 
Aik 

*?k 

At 

Fig. 4 Computational molecule in the cross plane 

f momentum equation. Due to the nature of the discretization 
locations of the cross flow momentum equations, described in 
a later section, these terms are discretized using a retarded cen
tral differencing which is first-order accurate. Since these 
viscous terms are negligibly small, i.e., of order of the 
neglected streamwise diffusion terms, for large Reynolds 
numbers, the discretization in the i\ and f directions remains 
essentially second-order accurate in the context of the RNS ap
proximation. As discussed in detail in reference [16], the 
overall accuracy of the discretization of the RNS scheme lies 
between first and second order; very close to second-order ac
curacy was observed for some examples (reference [16]). The 
nonlinear convective terms in the finite difference equations 
are qualsilinearized, with respect to the previous marching 
location, using a Newton linearization. The linearized equa
tions result in a coupled system for the vector [U, V, W, p]r. 
The system of equations can be represented by the matrix 
equation 

lA]M = {q] 

where (<£) is the solution vector [U, V, W, p]T, [q] is the 
known right hand side of the equation, and [A] is the nine 
diagonal coefficient matrix shown in Fig. 3. The associated 
computational molecule is shown in Fig. 4. Each of the 
elements of the coefficient matrix [A] is a 4 by 4 matrix cor
responding to the column size [4] of the vector [<j>]. The 
discrete system of equations is solved for [U, V, W, p]fj, /, at 
each marching location ;' with the modifed strong implicit pro
cedure (MSIP) of reference [27]. This method was originally 
developed for the scalar system describing the two-
dimensional heat conduction equation [27]. It was modified 
by the present investigators for application to a vector system 
of equations in a previous study [19]. The details of the pro
cedure are given in references 19 and 27. As mentioned in 
reference [19], for a two-dimensional flow the cross-plan 
reduces to a line and the system of equations reduces to a 
block tridiagonal system for [U, V, p]u which is solved by 
standard LU decomposition. 

Boundary Conditions 

The method of application of boundary conditions often 
dictates the efficiency of a solution algorithm. A major change 
in the RNS/MSIP solution procedure has been implemented 
in the present study by a modification of the boundary condi
tions as applied in the previous study [19]. 

Inflow and outflow boundary conditions are straight for
ward. Since streamwise (J) diffusion terms are neglected and 
streamwise convection terms are upwind differenced, the 
velocities have an initial value character (except in regions of 
reversed flow). Therefore the velocities must be specified only 
at the inflow boundary assuming that flow reversal does not 
occur at the outflow boundary. Due to the splitting of the 
streamwise pressure gradient into a forward differenced 
(relaxation) and backward differenced (marching) elements, a 
pressure condition is required at both the inflow and outflow 
boundaries for mach numbers 0 < M < 1. For mach numbers 
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Fig. 6 Block tridiagonal system at marching location (i) for 2-D flow 

M > 1, u> becomes unity and therefore a pressure condition is 
not required at the outflow boundary i.e., full marching. For 
incompressible flow (a) = 0) a pressure condition is not re
quired at the inflow boundary (full relaxation). For 0<M< 1, 
the staggered pressure (see Fig. 1), leads to partially prescribed 
pressure condition at both the inflow and outflow computa
tional planes, since at the node point /, 

i.e., for co^O, even though the pressure is prescribed at the in
flow only a portion (up) is actually used in the computations; 
at the outflow (1 -a) times the prescribed pressure is used. 

In the cross plane (rj — I plane), it is important to apply the 
boundary conditions in a consistent manner if the system of 
discretized equations is to be solved efficiently. To illustrate 
the present procedure, let us first consider the two-
dimensional flow problem. The cross-plane then reduces to a 
line, e.g., 0<r;<l . The discretization locations for the con
tinuity, ^-momentum and ij-momentum, associated with the 
system of equations to solve for [UVp]T at the node j , are 
denoted in Fig. 5 by © , (J), and Q), respectively. 

As seen in Fig. 5, the number of discrete ^-momentum equa
tions is y'max - 2 and the number of descrete rj-momentum and 
continuity equations are each y'max - 1. Therefore the total 
number of unknowns is 3ymax (U, V, and p for each node) and 
the total number of discrete equation is (3ymax - 4). For solid 
walls (/' = 1 and J = ymax), each wall has two physical boun
dary conditions, i.e., U = 0 and V = 0. Therefore, the system 
is closed in so far as total number Of equations plus the boun
dary conditions compared with the number of unknowns is 
concerned. However, since there are only y'max - 1 discrete -q-
momentum equations, the numerical solution procedure ap-

,U,VJ j = 1 

Fig. 7 Grouping of discretization governing equations in the flow field 

parently requires a condition for pressure at one of the boun
daries (j = 1 ory = ymax). This would render one of the boun
dary conditions on V redundant. In the previous study (19), 
the zero normal velocity (V = 0) was indirectly imposed at the 
outer boundary (j = ymax) through an artificial pressure boun
dary condition. An iterative process on this pressure boundary 
condition, imposed aty = ymax was required in order to ensure 
global mass conservation or that the velocity V = 0 at j = 
ymax. In the present study, the zero injection conditions are 
directly imposed at both the boundaries without any need for 
the iterative artificial pressure boundary condition. This is ac
complished by slightly changing the structure of the block 
tridiagonal matrix near the outer boundary. The block 
tridiagonal system at the marching location (i), for two-
dimensional flow, is shown in Fig. 6. For an interior point, 
2<y'<ymax_ 2, the three equations for the unknown U, V, and 
pare grouped as: 

continuity a ty - 1/2 
^-momentum at j 
^-momentum aty'+ 1/2 

For the point next to upper boundary (the lower boundary can 
be chosen instead of upper boundary) we modify the grouping 
as follows. 

continuity at (/max - 1 - 1/2) 
£-momentum at (jmm - 1) 
continuity at (/max - 1 + 1/2) 

For wall boundaries (i.e., y = 1 andy = j„ 
given as follows. 
For 

x) the structure is 

J=Jrr 

j=l 

U=0 
V= 0 (or specified) 
ij-momentum eqn at (jmm - 1 + 1/2) 

£/=0 
V= 0 (or specified) 
^-momentum eqn at (1 + 1/2) 

The arrangement of the equations and the boundary condi
tions is shown in Fig. 7. 

For periodic boundaries, the surface normal velocities can
not be specified. The total number of discrete equations re
mains 3y'max-4. However, the number of unknowns is now 
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v = vn - Aij/2 and f-momentum equation at f = fmax - Af/2). 
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Fig. 8 Periodic boundaries for 2-D case 

reduced (Fig. 8), since the values of the unknowns aty'=y'max 
are equal to those at j = 1. 

Therefore the total number of unknowns is now (3ymax - 3). 
This requires only one additional equation to close the system. 
This condition is obtained by applying the £ -momentum equa
tion at J=J„ This relies on the fact that the location 
j =jmm +1 is equivalent to the location j = 2. The resulting 
periodic block tridiagonal system can once again be solved us
ing the standard LU decomposition (28). 

This procedure can be directly extended to three-
dimensional flows since the r\ and f momentum equations are 
discretized in exactly the same manner as for two-dimensional 
flows. The continuity equation is now dicretized at (/—1/2, 
AT— 1/2) (Fig. 2). Along the lines ymax - 1 and kmax - 1, the ar
rangement of equations is as follows: 

For(/„ • 1 , * ) 

continuity at (/max - 1/2, k—1/2) 
£-momentum at (/max ~Uk) 
f-momentum at (/max_ 1. k+1/2) 
continuity at (/„ 1-1/2, £-1/2) 

with a similar form for (j, kmax -1) . For interior points, 
2 <y'<ymax - 1, the arrangement is given as 

continuity at ( /- 1/2, Ar- 1/2) 
^-momentum at (J, k) 
?7-momentum at (/+ 1//2, k) 
f-momentum at (j, k+\/2) 

The resulting block nine-diagonal matrix system is solved in 
the same manner with the MSIP scheme. The boundary condi
tions can be summarized as follows. 

Inflow (£ = £0)
: At the inflow boundary, velocities are 

specified. A condition on the staggered pressure is required 
only for the compressible case (o^O). 

Outflow (jj = £max): At the outflow boundary, only one 
boundary condition on the staggered pressure is required. 
Either p or dp/d£ is specified. 

Lower and left wall boundaries (»; = 0, and f=0); No slip 
and zero injection are specified on the solid walls (C/=0, 
V=0, and W=0). A boundary condition for pressure is not 
required. The normal momentum equations, at the corre
sponding boundaries, are applied to obtain the wall pressure 
(?)-momentum equation at 7/ = 0 + Aij/2 and f momentum 
equation at f = 0 + A £72). 

Upper and right boundaries (t) = i)max and f=fmax): Once 
again zero injection and no slip are specified on the solid 
walls. A boundary condition for pressure is not required. The 
normal momentum equations are applied at the boundaries to 
obtain the surface pressure (^-momentum equation at 

Solution Procedure. Starting from the inflow boundary 
and then at each marching location /, the block nine diagonal 
system shown in Fig. 3 is solved with the MSIP algorithm for 
[U, V, W,p]T. The density and temperature for compressible 
flows are updated after the local iteration for the quasilinear-
ized (U, V, W, p) have converged at each marching location i. 
The density and temperature are evaluated using the state and 
energy equations. The relaxation (marching) procedure pro
ceeds to the downstream boundary. The terms with 
superscript (n -1) are then updated from the previous 
marching sweep or global iteration. The relaxation process 
from the inflow to the outflow boundaries is repeated until the 
maximum change in the pressure field for two consecutive 
global iterations is less than a prescribed tolerance, e.g., 10~5. 

Stability 
As discussed in reference [19], a detailed stability analysis of 

the relaxation procedure for two-dimensional incompressible 
flow is presented in reference [16] and a similar analysis for 
compressible flow is given in reference [29]. The analysis 
shows that the relaxation procedure for the pressure field is 
unconditionally stable. Since relaxation of the pressure field in 
the marching direction is the same for three- and two-
dimensional flows, a similar conclusion can be inferred for 
three-dimensional flows. For the cross-plane inversion, the 
MSIP procedure has been shown to be unconditionally stable 
in reference [27]. Therefore, the overall solution procedure is 
postulated as unconditionally stable. No stability limitations 
were encountered in the present calculations. 

Results 

The three-dimensional flows considered in this study were 
chosen primarily to validate the scheme and to compare the 
results with available experimental data and numerical solu
tions obtained by other schemes. First, a simple case of 
laminar developing flow in a straight duct of square cross sec
tion was considered. As noted previously, the Reynolds 
number Re is based on the uniform inlet velocity and the 
hydraulic diameter H of the cross section. The velocities and 
lengths are nondimensionalized with respect to the inlet veloci
ty and the hydraulic diameter respectively. The number of grid 
points used in the streamwise direction is 51 and in the cross 
plane 11 by 11. The results obtained for incompressible flow 
were compared with the numerical solution of Rubin and 
Khosla (reference [30]), obtained using a boundary 
layer/potential core analysis, and with the experimental data 
of Goldstein and Kreid (Reference [31]) (see Figs. 9 and 10). 
The comparison shows very good agreement of the RNS 
results with both the earlier numerical results and the ex
perimental data. Next, a slightly more severe case of develop
ing flow in circular arc (curved) duct of square cross section 
was considered (Fig. 11). As in the case of the straight duct, 
the Reynolds number is based on the uniform inlet velocity 
and the hydraulic diameter of the cross section, The Dean 
number, which is defined as Re/Vi?/i/ is 55, and Reynolds 
number is 205. Once again, only the incompressible flow solu
tion was obtained, as the data for this case was readily 
available. The number of streamwise stations was 101, with a 
grid size of 15 by 15 in the cross plane. The development of the 
streamwise velocity profiles in the radial plane and in the 
trnasverse plane, from the entrance to the fully developed 
region, is shown in Figs. 12 and 13. The fully developed 
streamwise velocity profile in the radial plane was compared 
with the numerical solutions obtained by Kreskovsky et al. 
[32], who assumed a parabolic secondary flow correction to 
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the primary flow, and with the solutions of Ghia and Sokhey 
[9], who used a parabolic method and with the experimental 
data of Mori et al. [33]. The comparison, as seen in Fig. 14, 
shows good agreement with the numerical results. The ex
perimental data differ from all of the numerical solutions. 
This disagreement of the experimental results can be at
tributed to possible inaccuracies in the measurements. Figure 
15 shows the comparison of the fully developed secondary 
velocity profile in the transverse plane with those predicted by 
Kreskovsky et al. [32] and Ghia and Sokhey [9]. The agree
ment of the RNS solution with the other numerical solutions is 
very good. A vector plot of the fully developed secondary 
velocity in the cross section is given in Fig. 16. This clearly 
depicts the plane of symmetry and the location of the vortices 
that appear away from the axis and toward the outer wall due 
to the effects of the centrifugal force. Compressible low Mach 
number solutions were also obtained but are not presented 
here. It should be pointed out here that, the procedure of ap
plying the boundary conditions developed in this study is 
aimed at improving the efficiency of the solution procedure. 
This procedure completely eliminated the need for any itera
tion procedure to satisfy global mass conservation, thereby 

TRANSVERSE 

HYDRAULIC DIAMETER H = 2ab/(a + b) 

Fig. 11 Curved duct geometry and coordinate system 
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Fig. 12 Development of primary velocity profile for a circular arc duct 
of square cross section, Re = 205, R/H = 14, K = 55 

Fig. 13 Development of primary velocity profile in the transverse plane 
for a circular arc duct of square cross section, Re = 205, R/H = 14, K = 55 
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reducing the computation time at each crossplane by a factor 
of three compared to that of reference [19]. The accuracy of 
the solution is in no way affected by the method of application 
of boundary conditions, since the boundary conditions in both 
cases were essentially the same, after the mass conservation 
was satisfied in the case of reference [19], at each marching 
plane. 

Summary 

A consistent procedure has been developed for the applica-
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tion of zero injection and pressure boundary conditions for 
the RNS algorithm. The matrix structure of the discretized 
equations has been reordered near the boundaries so the 
physically meaningful conditions can be applied on the boun
daries in a direct manner. Global and local mass conservation 
is satisfied automatically without the necessity of iteration or a 
Poisson pressure equation. The modified strongly implicit 
procedure (MSIP) is used to invert the nine diagonal matrix 
resulting from the coupled system of equations for velocities 
and pressure in the cross plane. The procedure has been 
validated for two example cases, developing flow in straight 
and curved ducts of square cross section. The solutions are in 
good agreement with other computed results and experimental 
data. The scheme will be applied to more complex geometries 
of practical interest and to compressible flows in future 
studies. 
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Sx^xy ' ^y^yy ~*~ ^z^zz 

Transformation 

A P P E N D I X A 

k k (x,y,z) 
•n = -n(X,y,Z) 

f = t(x,y,z) 

The Jacobian J is given by: 

1 

x^^Zt+Xiy^Zr, +xvy(zi -x^y^ -Xyy^-xy^ 

The contravariant components U, V, and W, written without 
metric renormalization (i.e., without dividing the expression 
for U by \l^x

2 + %y
2 + £ / and so on) are given by 

U = £xii + £yv + £zw 

V = -qxU + r]yV + rizW 

where u, v, and w are the Cartesian velocity components in x, 
y, and z directions respectively. The shear stress terms appear
ing in the momentum equations are given as follows 

x ~ %xTxx "•" iyTxy "•" Zz7xz 

1'z ^x^xz *y^yz ~*~ *>z'xz 

Tx ~~ Vx'' xx ~*~ Vyl'yx ~T~ VzTxz 

1y ~ Vx^xy "*" "QyTyy ' ^Iz^yz 

Tz" = VxTxz + ?lyTyz + rlzrzz 

^x ix^xx ~*~ f>y1~yx ~*~ zz 'zx 

Ty — hx^xy "^ *yryy ' *zrzy 

rz ~~ *xTxz ' VvTvz *~ sz7zz 

where TXX, rxy, etc. are the regular Cartesian shear stress com
ponents. The Cartesian derivatives are expanded in £, -n, and f 
space via chain rule relations such as ux = kxui +-qxu^ + {xuf. 
The Cartesian velocity components are in turn expressed in 
terms of the contravariant velocity components defined earlier 
by the following 

u = x^U+x^V+XfW 

v = y^U+y^+y^-W 

w = z^U+z^V+ZtW 

Finally, the terms GH, g f f , etc. appearing in the K are given as 

Gjp = U((kx)iu+^y)iv+az)iw) 

+ K ( ( W , H + ($,),!>+ (f«),W) 

Gw = U((r,x)iU+ (Vy)iV+ (riz)s:W) 

= V(hx)v
u+ (7ly)nV= (riz)nw) 

Gfr = U((tx)i:U+({y)iV+({z)tw) 

+ K ( ( k ) , K + ( f , ) , W + ( r t ) , W ) 

+ W{(tx)iU+(ty)iV+^z)iW) 

g(" = ixVx + iy-Vy + iz'Oz 

gU = U i + WV + W* 
g"e = ixVx + iy-ny + izVz 

gm = nx
2 + %2 + Vz2 

8"* = Vxtx + Vyty + Tlztz 

g" = Ux + tyty + Uz 

g{V = txVx + tyVy + tzVz 

gS = Sxtx + tyS, + S& 
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The Bole of Eigensolutions in 
Nonlinear Inverse Cavity-Flow 
Theory 
The method of Levi Civita is applied to an isolated fully cavitating body at zero 
cavitation number and adapted to the solution of the inverse problem in which one 
prescribes the pressure distribution on the wetted surface and then calculates the 
shape. The novel feature of this work is the finding that the exact theory admits the 
existence of a "point drag" function or eigensolution. While this fact is of no par
ticular importance in the classical direct problem, we already know from the 
linearized theory that the eigensolution plays an important role. In the present 
discussion, the basic properties of the exact "point-drag" solution are explored 
under the simplest of conditions. In this way, complications which arise from non
zero cavitation numbers, free surface effects, or cascade interactions are avoided. 
The effects of this simple eigensolution on hydrodynamic forces and cavity shape 
are discussed. Finally, we give a tentative example of how this eigensolution might 
be used in the design process. 

Introduction 
The present paper bears upon the two-dimensional inverse 

or design problem for fully cavitating hydrofoils in which one 
specifies the pressure distribution on the profile wetted surface 
and then calculates that wetted surface shape which will satisfy 
this prescription. This design problem is certainly not new to 
airfoil designers and as far as cavity flows are concerned, both 
linear and nonlinear design methods have been worked out. In 
the realm of nonlinear approaches to the present problem, the 
very general method of Yim and Higgins [1] is worthy of note 
because it applies to single foils as well as to cascades of pro
files for all cavitation numbers in the cavity-flow regime. 
Another approach has been discussed superficially by 
Khrabov [2]. Both of these contain far more generality than is 
required for this study at zero cavitation number. For the 
direct or off-design problems of exact cavity-flow theory, a 
good example of the present level of development is 
represented by the work of Furuya [3] and it is clear that now 
one can do both the design and off-design problems for fully 
cavitating hydrofoils. Thus, one can attempt to tailor the pro
file to an entire set of performance goals and failing that he 
can at least design for the best compromise among a set of 
conflicting requirements. 

According to many authors [4-7], the inverse problem is not 
thought to present much of a challenge at zero cavitation 
number. In this case, the classical method of Levi Civita [7] 
can be applied to an isolated body. This view is certainly 

Contributed by the Fluids Engineering Division and presented at the Interna
tional Symposium on Cavitation and Propeller, Wuxi, Peoples Republic of 
China, 1986. Manuscript received by the Fluids Engineering Division October 
26, 1986. 

proper as long as one is content, after prescribing the pressure 
in the circle plane, to accept whatever correlation between 
points in the circle and physical planes may result. Of course, 
such a rudimentary approach does not lead to a useful design 
procedure. 

The motivation for the present investigation is that none of 
the literature on the nonlinearized direct and inverse problems 
we have surveyed so far [1-8] has made use of the fact the ex
act theory admits the existence of a "point drag" or com
plementary function. While this fact is of no particular impor
tance in the direct problem, we have already seen in the case of 
the linearized inverse problems [9-11] that the complementary 
function can play an important role. For the exact inverse 
theory there has been a question regarding the existence of a 
nonlinear eigensolution and if it does exist, should it be an ad
missible component of the solution [1]? Therefore, in this 
study, we explore these questions regarding the existence and 
usefulness of a "point drag" or eigensolution in the nonlinear 
theory under the simplest set of circumstances and this leads 
us naturally to the restrictions that the free streamline flow 
pertains to an isolated profile and that the flow be at zero 
cavitation number. These simplifications free us from the 
complications arising from non-zero cavitation numbers and 
other boundaries in the flow domain such as free surface or 
neighboring cascade blades. 

In this paper we use the term eigensolution in the sense of 
thin airfoil theory as suggested by the work of Van Dyke1 

Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, 
CA, 1975, pp. 48-54. 
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because we already know the inverse problem in the theory of 
fully cavitating hydrofoils is not necessarily unique. Our aim is 
to find a sufficiently weak singularity which can be added to 
the classical Levi Civita solution and can then be used to 
satisfy certain additional physical conditions relating to the 
location of the free streamline springing from the hydrofoil 
nose and thereby provide a unique inverse cavity-flow solu
tion. After we have constructed the simple eigensolution, we 
will examine some of its properties. The actual use of this solu
tion in the design process will be presented elsewhere, 
although we will start the process so that the potential 
usefulness of the eigensolution in design can be seen. 

Flow Geometry and Conformal Mappings 

The flow geometry and the principal quantities associated 
with the flow are illustrated in Fig. 1. The origin of coor
dinates in the z = x + iy plane is taken at the stagnation point 
on the wetted surface of the hydrofoil. This point is denoted 
by O in Fig. 1. The chordline of the profile is inclined at the 
angle a with respect to the x axis and the free-stream velocity 
U is taken as being parallel to this axis as illustrated. The flow 
separation point at or near the profile nose is the point A, as 
illustrated for a sharp-nosed foil. The "upper" cavity surface 
is shown as the dashed curve extending from A x to the point 
O' at downstream infinity. In the case of a round-nose pro
file, A i can lie on the upper wetted surface behind the leading 
edge. This case is not illustrated in Fig. 1. The point A2 

denotes the location of the trailing edge of the wetted surface. 
The lower surface of the cavity leaves the wetted surface at A2 

and extends as shown by the dashed line to the point O' at 
downstream infinity. 

Let the coordinates of a typical point on the wetted surface 
be denoted by x and y and those on the upper cavity by xc and 
yc as shown in Fig. 1. While the orientation of the profile in 
the z plane is convenient for purposes of analysis, the x—y 
system is not always a convenient reference frame for foil and 
cavity contours. For this purpose we use a coordinate system 
with the abscissa along the chordline as shown by the distance 
a measured from the profile nose. The ordinates of the wetted 
surface are then given in terms of a as 7/ (a) and the upper cavi
ty ordinates are given by i)c (a). At the trailing edge of the pro
file, the cavity thickness is rjc = T. These quantities are also 
shown in Fig. 1. In the or, r; system the stagnation point O is 
located at (a0, -q0) as illustrated. The transformation between 
the (x, y) and (a, rj) systems is 

a+irt = a0 + i-qD+zeia, (1) 

where z is the complex variable, z = x + iy, and a is the angle 

Nomenclature 

o 0' 

Fig. 1 Profile and cavity geometry in the physical or z-plane at zero 
cavitation number 

F - PLANE 

0 

* F = 4> + i + 
A l 

A2 

0' 

0' 

Fig. 2 Profile and cavity surfaces at zero cavitation number in the 
plane of the complex potential, F = 4> + i\p 

of attack as measured by the inclination of the chordline with 
respect to the x axis and free-stream velocity U. 

The conformal mappings start with the complex potential in 
the z plane, 

F=4> + ty, (2) 

where <t> is the velocity potential and 4/ is the stream function. 
As is customary, we adjust these quantities to make 4> = 0 at 
the stagnation point, O. The stream function is taken to be 
zero all along the stagnation streamline. Therefore, the boun
daries of the flow can be represented by a cut all along the real 
axis in the .F-plane as shown in Fig. 2. Note that the wetted 
surface extends from the stagnation point at O to the trailing 
edge at A2 and the lower cavity surface from A2 to O' must 
line along the lower surface of the cut. This is so because 
downstream from the stagnation point, the velocity potential 
increases in the flow direction and the stream function 
decreases outwardly from the foil or cavity surface. On the arc 
OA!, the flow direction is reversed with a consequent reversal 
in the gradients of 4> and \p so that the point A x is on the upper 
edge of the cut. 

The mapping which takes the .F-plane into the arc and in
terior of the upper semi-circle in the f plane is 

F=b2 [cosy—j-(f+-p)] • (3) 

A, 

a = -

(V^ + V^,) 

c 

cD 

CDW) 

cavity detachment point near 
or at profile nose 
cavity detachment point at 
profile trailing edge 

see related nomenclature 
below 

= see related nomenclature 
below 

= location of eigensolution 
singularity on unit circle 

= drag coefficient 
= lift coefficient 
= pressure coefficient on wetted 

surface 

c = 
ds = 

E = 
= 4> + i4< = 

<$> = 

+ = 
O = 

O' = 
T = 

U = 

profile chord length, c = l 
element of arc length in z-
plane 
strength of eigensolution 
complex potential in complex 
F-plane 
velocity profile 
stream function 
stagnation point location 
point at infinity 
cavity thickness at trailing 
edge 
free-stream velocity 

W = M — IV = 
dF 

dz 
= complex velocity 

intermediate mapping complex 
plane 
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Corresponding points, between the F and f planes are in
dicated in Figs. 2 and 3 except for the point C which is dis
cussed later. 

Then we introduce the complex velocity, 

dF 
w = u — iv = , (4) 

dz 
in order to write 

w * = tfF=62[-i-(f+-^)-cos7](V--^)y . (5) 

These quantities are now used to define the logarithmic 
hodograph or co-plane: 

- M » 
1 dF w q .. r q . 1 

= = = - i - e - " = exp I n - — 6 \ . 
U dz U U VV U J 

Therefore we have 

w(f )=0 + fln-
U 

I+IT, 

(6) 

(7) 

where r = In q/U. On the free streamlines q = Uso that T = 0 
there. In the f-plane, these free streamlines are on the real 
axis. At O' we know that 6 = 0 also. 
Therefore, 

co(0) = 0 (8) 

and w(f) is real when f is real. At the stagnation point, O, 
q—0 so that r ~ — oo there. The flow directions differ by -nr on 
either side of O and so the co-plane with the various correspon
ding boundaries can be represented as illustrated schematically 
in Fig. 4. 

From equations (5), (6), and (7) we write 

dz = dx+idy = JJ— {-Y\{+-f) - co s 7 J 

On the wetted surface f = e*3 and equation (9) leads to 

2/?2 

( ' - (9) 

and 

dx = —— e r [COS7 - cos/3] sin/3cos0G?/3 

262 

dj> = —zj- e~T[cos7-cos/3]sin/3cos0c/|3 

(10) 

Note that fify/cfi = tan0 as it should if the wetted surface is to 
be a streamline. On the upper surface of the cavity T = 0 and 

Nomenclature (cont.) 

C - PLANE 

2 f 1 [ y U+fl-cosy] 

WETTED SURFACE 

UPPER CAVITY 

01 " \ +1 
LOWER CAVITY 

Fig. 3 The transformation shown here maps the flow from the upper 
half of the Z-plane into the interior of the upper unit semi-circle with the 
point at infinity at the origin 

OJ - PLANE ( 0 = 8+ i r 

= In(qJU) 

Fig. 4 Schematic diagram of the complex logarithmic hodograph in 
the to-plane 

arg f = -w so that equation (9) leads to 

1 \ 1 / . 1 \ rff b2 r 1 
dxr = —rr— cos0 U [^(f+T)-cos7](r--) 

r 
dyt=-L- rinff[-i-(f+-i.) -cosy] ( f ~ i - ) r 

(i i) 

provided that - 1 < £ < 0. At this point in the development £ 
is the radial distance on the real axis in the f plane. 

Returning to equation (9), we can write the square of the arc 
length along the wetted surface as 

r b2 -)2 

(ds)2=dzdz= 12 —— e-T[cos7-cos(3]sin/3c?/3j , 

where we have also made use of equation (10) because it ap
plies to the wetted surface. But from equation (7), we also 
have 

r = In-gr = lnVl--C„ 

so that 

b2 

ds = 2 —— [(COST - cos0)sin/3/Vl - Cp (f)]d& 
U 

(12) 

(13) 

z=x+iy = complex variable in the 
physical (x, y) plane 

a = angle of attack measured from 
negative real axis 

5 = angular location of stagnation 
point measured from negative 
real axis 

£• = complex variable in circle 
plane, f=e* 

?) = normal distance from profile 
chord 

£ = complex semi-circle plane, 
$ = T - /3 

a = distance along profile chord 
7 = stagnation point angular loca

tion on unit circle in f plane 
(cos 7 = a/b) 

yc = angular location of. eigensolu-
tion singularity on unit circle 

value of 4> at A, 
value of <t> at A2 

q co (f) = 0 + fln — = d + h = complex logarithmic 
u hodograph 

6 = flow inclination 
q = flow speed 

Subscripts 
c = pertains to eigensolution coc or 

to the cavity surface 
o = pertains to flat plate solution 

co0 and other variables 
specifically associated with the 
geometric point O 

0 = used on any variable having 
zero as its argument or limit 

1 = pertains to regular part of 
solution co! 
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on the wetted surface. As we have noted previously, the flow 
directions differ by TT on either side of 0. Therefore, if the sign 
of dz is positive on the arc OA2, it will be negative along arc 
OA!. As a result of this difference ds might have a like sign 
change in these two regions. Just how this might occur 
depends on the form of Vl-Cp(j3) in any particular case. We 
will defer consideration of this question to a later place in the 
development. 

Hydrodynamic Forces 

The development of general formulae for the hydrodynamic 
forces on the profile depend upon certain properties of the 
function co(f) which result from the previously noted fact that 
w(f) is real when f is real. For then one can apply Schwartz's 
principle of symmetry [7] in order to write a>(f) = w(t;) and 
thereby obtain the analytic continuation of co(n into the 
lower half of the unit circle [6]. Thus we can write for a 
prescribed modulus, If I < 1, inside or on the unit circle, 

0(0 ) - f r ( /3 )=0 ( -0 )+n- ( - |S ) , 

and 
T ( - / 3 ) = - T ( / 3 ) 

0 ( - 0 ) = 0 ( 0 ) 
(14) 

Hence r is an odd function of /J, or Im f, and 0 is an even func
tion of (3, or Im f. 

Using equation (12) and the fact that <o(f) is now defined 
inside and on the entire unit circle, one finds [7] from the 
calculus of residues that 

*" b [4w'(0)cos7-w"(0)J (15) 

and 

Cr, 

U„ 

2 t/„ 
(16) 

where the profile chord, c, will be taken as unity in this work. 
The moment can be calculated after the complete solution has 
been found. 

The Form of w(f) Near the Stagnation Point 

This is also a well known result which we shall review briefly 
because of later need. The form of o> near O is dominated by 
the fact that on a smooth contour co jumps by the amount IT. 
In particular, as one traces the profile surface, starting at Ax 

in Fig. 1 and then passes through O while proceeding to A2, 
the jump is a decrease in 0. In the f plane this is precisely the 
behavior exhibited by the real part of the analytic function / In 
(f— e'"1)- However, this function by itself does not have the 
symmetry specified by equation (14) for admissible forms of 
co. But if we subtract from it a similar function which has a like 
jump at the image of O with respect to the real axis in the f-
plane, we preserve the necessary behavior at O and also satisfy 
the preceding symmetry requirements. Aside from arbitrary 
additive constants, this function has the form 

/In f-e'7 

f - e - 'T 
Finally, we require that w(0) = 0. Because of this condition 
the resulting function which provides the flat plate solution is 
[4] 

« o ( r ) = 0 o + / T o = - « + fln-£^-, (17) 

with 7 = 7 r - a in the case of an isolated flat-plate profile. For 
this case, one can show that this function has the flow direc
tion, 60 = — a behind the stagnation point or 60 = ir — a 

ahead of the stagnation point on f = e®. Therefore, the wet
ted surface in the z-plane is a straight line through O with its 
trailing edge inclined at the angle -a with respect to the 
positive real axis. Moreover, since TU vanishes on the real axis 
in the f-plane, the free streamlines have Cp = 0 as required. 
Thus we can write equation (17) as 

u0(£) = i<:H(t3-y)-a + iln S-e* 

where 

H((5-y): 

i - rc* 

/3<Y 

(3>7 

(18) 

is the Heaviside function. 
The contribution of u0 to CL and CD follows from equa

tions (15) and (16). From equations (15), (16), and (18) we get 

b2 

xcosa (19) C,„ = 2ir 
Uc 

Cr>n = 27T sin'a (20) 

and we see that L/D = cota as is proper for the flat plate. We 
can also use the relationship Cp = \ - e2r to find the pressure 
distribution on the plate. The result is 

4sin/3sinY 
C =-

(cos(3 - COS7)2 + (sin/3 + suvy)2 (21) 

From this result, we see that when 18 = 7, Cpo = 1 and when 
13 = 0 or IT, Cp0 = 0 as required. 

Continuing the study of the flat-plate solution, we can 
rewrite equation (17) for points on the wetted surface as 

r eh — giB 
co„ = 7r - a + 7 + /In : -rr 

in which case 

=vr^c: 
After some manipulation involving equation (18) and the use 
of equation (11), we find that 

, 21 cos/3 - COS71 
po (COS7 - cosjS)2 + (sin7 + sin/3)2 

Next we can introduce d{u+it)) = emdz from equation (1) 
and use equation (9) with the result that 

b2 

d(a + irj) = 2 [sin£ + sinasin2^ - cosacos£sin£]e?£. 

This last result implies that 17 = 0 as is proper for a flat plate 
and that da is simply the arc length ds along the wetted surface 
measured from the profile nose where <r = 0. We can integrate 
this last equation from a = 0(£ = 0) to some value, 0 < a < 1 (0 
< £ < 7r), and get 

b2 r / cosa \ 
s = 2 ^ ^ [ ( l - c o s £ ) ( l ^ - [ l + cos£]J U 

+ (£-sin2£) Slnon 

T T 
(22) 

The profile is to have unit chord, however, so that when £ = it, 
a = s = 1 and 

1 
U 4 + irsina 

(23) 

When equation (23) is used in equations (19) and (20), one ob
tains the well known Rayleigh formulas [12]. 

Additional properties of the flat-plate solution which are 
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important for the present considerations relate to the shape of 
the upper surface of the cavity. In Fig. 3, £ will be on the 
negative real axis for points on this part of the cavity. 
Therefore, let us put f = — fc where fc is a real positive 
number. Then we can use d{a + /17) = e""dz, and write equa
tion (9) in the form 

d(a + ir)) 

exp/[a + 60 ( r c ) ] < / [ [ — (jc + — ) - cosa] ] . 
U 

But now 

exp/[a + 6 

and so we have 

1 
d(a + it]) =-

ft2 

[ / rc*-

(e fa-rc) 
(e- / a-r c) 

2/sina 
-2 + + 

2 e'°n 

The integration in this case starts at A, where fc = 1 and <r = 
?) = 0 and proceeds to some value of ac, rjc corresponding to 1 
> f > 0. This leads to the parametric representation of rjc (<jc) 
in terms of fc which is given by 

1 b2 ( i - r c ) 2 r d + rc)2 

0V- = — — : 1 — cosa — 2 

and 

2 U fc 

1 62 . 

2fc 

2 £/ sma L 2J* 
•21nfc]. 

(24) 

(25) 

Equation (23) gives the value of b2/U to be used in equations 
(24) and (25). 

It is useful to find the ordinate of the upper surface of the 
cavity above the trailing edge of the wetted surface which we 
denote by TJC(1). This can be done by a straightforward 
numerical method [18] using equations (24) and (25). It is 
found when the points are plotted in an T/C(1) - a plane that a 
linear relationship fits the data for 0 < a < 10 deg. When a is 
measured in degrees, this line has the equation 

rjc(l)=.0294a". (26) 

The corresponding relationship for a measured in radians is 

TJC(1)= 1.684a. (27) 

According to linearized theory [13] this latter form of the 
results would be ?jc(l) = 1.681a. 

The flat-plate function eo0 (f) is traditionally considered to 
possess all of the singular behavior of the function w ( f) . The 
shape of the smooth body is then represented by an analytic 
function w^) which is regular inside and on the unit circle. It 
must also satisfy the same symmetry requirements as are im
posed upon 0)o and we must also insist that co, (0) = 0. Then one 
traditionally puts co(f) = «„ + &>!. As mentioned previously, 
we will add to this customary sum a new function, coc(f), 
which is the analog of the point-drag function of linearized 
theory. We will now explore the properties of this 
eigensolution. 

A Simple Eigensolution 

The complementary function 01 c = 6c + hc, is to be deter
mined from the requirements that TC = 0 on the cavity and the 
foil, 6C = 0 along the stagnation streamline and that uc 

vanishes at infinity. A function which satisfies these condi
tions can be found most easily by considering the flow in the 
F-plane, Fig. 2. For example, if we take 

E 
Ue = ee + he = - ^ - (28) 

where £ is a real constant, we have a function which satisfies 
the necessary requirements. The two conditions wc(oo) = 0 
and qc = U on both the cavity and the profile wetted surface 
can be satisfied by any member of the family of functions hav
ing the form F~m, 0 < m < 1. But the condition 8C = 0 along 
the entire stagnation streamline can be satisfied only when m 
= Vi. This choice for the complementary function seems to 
offer the advantage that it will cause less alteration of the 
upstream flow field inclination than other possibilities. 
Moreover, it is the only choice from amongst the functions 
F~m which gives the correct branching of the flow and it ap
pears to be the most convenient choice for further analysis. 
Consequently, we shall adopt this functional form for the sim
ple eigensolution in this work. The word simple indicates that 
the branch point for this solution is coincident with the stagna
tion point at O in Fig. 1. We shall generalize this result later. 

It has been noted by O. Furuya2 that equation (28) is just 
the single-spiral-vortex function proposed by Tulin as a useful 
representation for cavity termination in the direct problem at 
non-zero cavitation numbers [14]. The small-scale structure of 
this function is responsible for its name as discussed by Tulin 
on page 21 of reference [14]. In connection with the present 
application, we may also mention Tulin's double spiral vortex 
model [14] which can be written as a logarithmic function [18]. 
It is found that the double-spiral vortex violates equation (8) 
and it will generally not produce a null pressure coefficient 
everywhere on the wetted surface. Therefore, it is not an ad
missible candidate for an eigenfunction. This is not to say that 
other logarithmic forms for an eigenfunction cannot be ac
ceptable. This writer has not found one as yet, however. 
Therefore, we shall content ourselves with the form of uc 

prescribed by equation (28) and restrict the present analysis to 
eigensolutions of this form. 

Equation (3) can be used to represent u>c in the f-plane as 

E -2£f 

COSY 4K> * ( f - ^ ) ( f - e - * l r ) 
(29) 

In the f-plane a>c(0) = 0 and when f is real, o>c is real. 
Moreover, o)c (f) is an analytic function which is regular inside 
the unit circle and which has simple poles at f = e±IT . Note 
from equation (29) that on the "nose cavity" dc — 0+ as f — 
- 0 and on the "tail cavity" 6C — 0 - as f — +0, as.also il
lustrated in Fig. 1. From equation (6), wc = Ue c and 
because of this exponentiation we see that the structure of coc 

leads to an isolated essential singularity in wc at the stagnation 
point O. The complex velocity o>c is bounded at this point 
however, and a smooth foil contour will pass through z = 0 as 
will be seen below. 

For points on the unit circle very near the stagnation point, 
j8 = 7, let i3 = 7 - e withe « l.Then 

o)c{y,e) = 

eb\smy + -— COS7 

and to 0{e~l), wc = exp - iE/eb sin 7. Therefore \wq\ = qc 

< 1 as e — O. Next consider an interior point, f = re''1. Now 
let r = 1 - p with 0 < p « 1. Then to 0(ft~l), oic(y, p) -
— iE/pbsint = ihiqc/U. Consequently, qc/U = exp - E/pb 
sin 7 and qc/U — 0 as p — 0. Appropriate linear combinations 
of these two cases can be used to consider other limiting paths 
but these give no new information about the boundedness of 

Private Communication (March 1985). 
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qc/U. As a final observation we appeal to a theorem of 
Weirestrass3 and assign the value of qc/U = 1 at the point O 
on I f i = 1. At points on the unit circle removed from O, f = 
e*3 and we have 

= 0 

and 

-E 
: ( /3)=-

fe[cos7-cosfl 7 + ;g 7 _ £ 
2bsin sin 

(30) 

(31) 

Since TC = 0 on the wetted surface, we expect coc to make no 
contribution to the lift although the singularity at the stagna
tion point should lead to a drag force. Making use of equa
tions (15), (16), and (29), we find that 

C, = 0 

and 

Cn =2ir-
E2 

(32) 

(33) 

From equation (31) we see that the flow direction is not 
defined at the stagnation point, (3 = 7. If /3< y however, 

E 

Z?[cos/3-cosy] 

along the arc OA2. If /3 < 7 

E 

-<0 

-<o, 
6 [cos/3 - C0S7] 

along the arc OA,. Therefore 6C changes sign at /3 = 7 and as 
noted previously, the real part of wc has a jump of ir as it 
passes through O. In view of equation (7) which requires that 
ir = In q/U, this situation suggests a strong similarity between 
Fabula's "step-profile" solution for the linearized theory [15] 
and the present eigensolution. The present application and 
those of references [13] and [15] are different, however. 

Simple Eigensolution Geometry 

The shape of the wetted cavity surfaces follow from the 
relationships of equation (6) which can be expressed as 

l^El^ dF m 
dz =— e = 

U U 
If we put t = E/\fF, we find for a profile of unit chord that 

2E2 1 ., , CD 1 
dz = -rr-T-e"dt = - — 

UP IT 
e"dt 

which has the indefinite integral, 

E1. 

V + < T + ) T 4 (34) 

Completion of this integration can be carried out in four parts 
starting from either side of the stagnation point where z = 0 
and t — 00. Details of these integrations are given in reference 
[18]. We will give only the final outcome here. This is il
lustrated by the following numerical example. 

We started the calculation by selecting 5 = 70 deg and E/b 
= .01. It is found that tan a = .01482 and U/E2 = 18,006. 
From equations (32) and (33) we have for the cavity drag due 

See for example, Copson, E. T., Theory of Functions of a Complex 
Variable, Oxford University Press, 1946, p. 81; or Tichmarsh, The Theory of 
Functions, 2nd Edition, Oxford, 1949, pp. 93-94. 

to a profile of unit chord 

Cn 

E2 

= 2TT—=.00035, 

as the contribution for this point-drag profile. 
The form of equation (1) for the present calculations, giving 

the transformation between {x, y) and (a, -n) coordinates is 

<i=.99989*-. 014796.V, 

and 

I'- .014796*+. 99989^. 

The next phase of the calculations is the evaluation of the 
equations for the wetted surface and cavity contours derived 
from equation (34). The result of these calculations is shown 
in Fig. 5. In this figure, the chordline distance, a, has been 
labeled as X and the ordinate, -q, has been labeled as Y. Note 
that the F-scale is magnified five times compared to the X-
scale. The trailing edge of the wetted surface is at X= 1. The 
upper surface separation point is at a = X= .240. The cavity 
thickness at X= 1 is Y= T= .02980. This point is marked to 
the same scale as the yf-scale by the dot and the line at X = 1 
in order to give an idea of the actual thickness of this example 
of a point-drag profile. 

The Eigensolution 

For the simple eigensolution, the restriction on the location 
of its point of application has allowed us to show that such a 
solution exists, that it definitely leads to a smoothly rounded 
profile nose and that it will cause an incremental thickening of 
the cavity depending on its strength, E. Of course, in order to 
explore further its possible properties, we need not restrict the 
eigensolution to be at the stagnation point. 

For example, suppose we choose some other point C on the 
wetted surface. Such a point is illustrated in Fig. 3 and it hap
pens to be located between the upper cavity separation point 
and the stagnation point, although C could just as well be at 
some other wetted-surface location. The main idea is that now 
P = yc at the location of the point-drag singularity and if we 
simply replace equation (29) by the modified expression 

«C(D=- • m 

b[cosyc-^+±) 

iE 

M n 7 c 

r 
b(t-e'yc)^-e"yc) 

s-elc r-e~'T< "]. (29a) 

we still have a function which satisfies those conditions needed 
for a complementary solution. It is clear that in the f-plane, 
coc(0) = 0 is in agreement with equation (8). Moreover, when f 
is real coc is real and on the unit circle TC = 0 everywhere except 
possibly at the simple poles, t=e c. From equations (15) 

CAVITY SURFACE 

WETTED SURFACE J 

Fig. 5 The profile and cavity contours produced by an isolated eigen
solution of strength Elb = .01 at the stagnation point 5 = 70 deg which 
produces a cavity drag CD = .0035 and cavity thickness T = .0298. 
Note the distortion of the vertical scale in the plot. The line and dot at X 
= 1 show the true geometry when the vertical and horizontal axes have 
the same scale. 
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and (16) it follows that 

Cn = 2ir 
E2 

~Uc~ 
(35) 

as before. On the other hand, because of the displacement of 
the point C away from O, a lift force is produced and we find 
that now 

SvbE . Y + -yc . 7 - 7 c 
CL =——— sin — ; — sin 

Uc 

ZirbE 8c + 8 . 5C 
sin sin — 

Uc 2 
(36) 

where y = ir — 5 and yc = •K — 8C in accordance with previous 
convention. The profile chord, c, should be set at unity in 
equations (35) and (36). Equation (36) shows that CL = 0 
when 5C = 8. But 8C < 8 when the point C moves toward the 
point A i, a negative lift results. In the limit as 8C -» 0, we have 

ZirbE 

Uc sin* 

If C is between O and A2 a positive lift is produced and in the 
limit when C is coincident with A 2 we have 

8irbE _____ 

If one were to let E be negative, the sign of the foregoing 
trends with respect to CL would be reversed. We must insist, 
however, that E > 0 because this function produces a thicken
ing of the cavity and because then _>c'(0) = -2E/b. Similarly, 
we have also found that _>o(0) = - 2 sin y. Thus, the effect of 
adding co0 and oic increases the net drag. Neither of these func
tions can act to reduce it. Accordingly, we shall take equation 
(29a) as the most general form of the eigensolution which has 
been sought. Since both of equations (29) have simple poles on 
the contour If I = 1, they can be thought of as elementary 
solutions. But as we have seen in the case of the simple eigen
solution, the pole at /3 = yc does not lead to an unbounded 
value of qc/U. Indeed, 0 < qc/U < 1 in the neighborhood of 
/3 = ± 7 - , which can be taken to be at any point on the wetted 
surface when /3 = +7C and we can take qc/U = 1 if we wish. 

The increased generality of this eigensolution does not mean 
that it is admissible for design use. It could be that one should 
restrict its location to the stagnation point. This is a question 
for future exploration. 

Some Profile Geometry and the Flow 

In any inverse design procedure, one starts the calculation 
by prescribing the pressure distribution or the magnitude of 
the velocity along the periphery of the profile. Of course, that 
is almost like having the solution at the outset; but not quite, 
because one does not know the relationship between points 
along the hydrofoil arc length, s, and corresponding points on 
the semi-circle in the f plane. Nevertheless, referring to Fig. 6, 
we can measure the arc length s from the point A2 at the 
cavity-trailing edge separation point. Then the arc length in
creases from A 2 until one reaches the stagnation point O in 
Fig. 6. At O the arc length will be designated by s0. Continu
ing along the periphery, one rounds the nose of the foil and ar
rives at the separation point A,. At this point, the arc length is 
sl. Finally we proceed along the upper surface of the cavity 
until we arrive at the point s2, a distance T directly above the 
trailing edge, A2. The distance 7*is measured perpendicularly 
to the profile chordline. Thus, it is parallel to the r\ axis in Fig. 
6. Clearly, 0 < sa < st < s2. 

A schematic diagram showing the flow speed on the wetted-
surface arc and the upper surface of the cavity is illustrated in 
Fig. 7. This figure shows rather clearly that the designer does 

Fig. 6 The geometry of a round-nosed profile of unit chord showing the 
origin of <T-IJ coordinates at the apex of the wetted surface correspon
ding to (xa, ya) in z-plane coordinates 

q/U 

0 

A2 

A] 

0 / 

^y^ 
A I 

h 

A 2 

S2 

Fig. 7 Schematic diagram showing a prescribed velocity distribution 
on a profile and cavity arc 

not have as much freedom with regard to the pressure distribu
tion prescription as he might wish. For example, we know that 
\q/U\ = 1 at s = 0, i1 = S) and in the interval, st < s < s2. 
Moreover, we take the values of q/U < 0 in the interval 0 < s 
_ s0 because the flow direction on the wetted surface points in 
the direction opposite to the positive sense of s. Between sB < 
5 < s2 the opposite situation holds and we count q/U > 0 in 
this interval. At no point in the flow can lq/U\ > 1. 

Since we prescribe the magnitude of q/U everywhere this is 
the same as prescribing the lift coefficient CL. This prescribed 
value of CL can be used to fix the relative position of the 
stagnation point s0 with respect to point s2 if the distribution 
q(s)/U is not too firmly fixed. One need only use the well-
known Kutta-Joukowsky formula, 

where c is the profile chord and T is the circulation. But we can 
write 

r=(A2 • A , ) . / , 

where 

and 

A,(s„) = J: o q(s) 

U 
ds 

i(s0,s2)=\ 
*i q(s) 

*n U 
ds+ (52—*i)-

Generally one will need to solve for the ratios s0/s2 and -^/s^ 
numerically, starting the iteration by supposing that possibly 
A[ and that part of A2 between s0 and s, are triangular areas. 
Indeed, we will see below that the area A2 must be rather close
ly specified in advance so that the chief freedom to be exer
cised by the designer is associated with A!. The thought behind 
these observations is that whatever the approach, the design 
CL and the distribution q(s)/U must be consistently 
prescribed. 

We now turn to the properties of the flow in the 
neighborhoods of s0 and s} because at s0 the flow on the wet
ted surface is a stagnation flow and at sl it is constrained by 
the requirements for smooth separation. For simplicity's sake 
we shall shift our reference point from _42 to the point O and 
measure the arc length 5 from O. This means that the distance 
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along the arc from O to A x is sx — s0 and we will normalize all 
intermediate distances s by writing x = s/(s{ -s0). 

Then it is known for a potential-flow stagnation point on a 
flat wall that the streamlines are equilateral hyperbolas having 
their separatrices as the straight wall and the normal to the 
wall through the stagnation point. It is also known from 
linearized theory [9], and it can also be shown for the exact 
theory, that if x = 1 is a separation point then Cp (x) ~ \l\—x. 
A specific example of this general behavior can be seen by 
referring to the various formulae for the flat-plate velocity and 
pressure distributions given above in the discussion surroun
ding OJ0. In particular, it is easily seen that dz/d£ = 0 at the 
separation points f = 1. Consequently curves of q/U and Cp 

will have vertical tangents at the separation points. In response 
to these requirements we shall consider a one-parameter fami
ly of speed distributions on the forward part of the wetted sur
face; namely, 

CAVITY 

Q(x) 
U 

= x [ l - W l - x 2 ( l - V l - j c 2 ) ] , (0<*<1). (37) 

Although this is a rather special class of velocity distributions, 
it probably contains as much generality as one needs for this 
discussion because most often the arc length from s0 to s, is 
very small compared to the total arc length s2. Therefore the 
curves of g{x)/U will be very steep and the shape of one 
choice of distribution would hardly be discernible from some 
other choice, provided that the required conditions at x = 0 
and s=l are satisfied. Other design requirements can affect 
this choice, but we shall not consider them here. Plots of equa
tion (37) are given for a highly stretched length scale in Fig. 8. 

This specification and cavity surface velocity for 5, < s < 
s2 makes the entire pressure distribution on the upper surface 
of the profile fairly well defined. In order that these results can 
be used conveniently in the process of reconciling the design 
CL with q(s)/U, equation (37) should be expressed in terms of 
the arc-length coordinates defined in Fig. 7. Normalizing all 
distances by s2 we can write 

: = ( _J j_ ) (£zM (38) 

Having prescribed the velocity distribution for points on the 
periphery of the profile, one can now use equation (13) in 
order to derive the circle-to-profile correlation between s0 and 
s2, albeit with some degree of ambiguity until the entire 
problem has been formulated and solved. For this correlation, 
we will write equation (13) in the form, 

q(s) b2 

ds = 2 -^r- (COS7 - cos/3) sin/3tf/3 U U 

b2 

u G?[(COSY — cos/3)2], (39) 

where equation (37) defines q(s)/Uin the interval, s0 < 5 < 
slt and in the interval, st < s1 < s2, we have q(s)/U = 1. 
Moreover, at this point we know that when 5 = s„, /3 = 7 and 
whens = sit (3 = ir. From equation (37) we can put 

(si -s„)dx = ds 

and we can integrate equation (39) from s0 (x = 0) to x and the 
right-hand side of equation (39) from /3 = 7 to /3. Therefore, 
the integral of equation (39) is 

( * i 
[x2 / l - - (1-* 2 ) 3 .2 J 

— + 4-)] 
b2 

~u~ (COS7 — cos/3)2. (40) 

-0.2 -o.l 
DIMENSIONLESS ARC LENGTH, ( s - s W i s , - s ) 

0 1 0 

Fig. 8 A one-parameter family of velocity and pressure distributions 
over the nose arc of a hydrofoil 

equation (40) becomes 

b^_ 

IT (1 +COS7)2 (41) 

When /3 = ir and x= 1. 

Proceeding to the arc st < s < s2 along the upper surface of 
the cavity one may start at the point /3 = r on the circle I f I = 1 
and move along the negative real axis toward f = — r = 0. 
The velocity q/U = 1 everywhere along this arc and equation 
(11) can be used to find the differential arc-length correlation, 

ds = 
U 

(_L + r)+ C O S 7](-L-r)-^, (42) 

where we have taken the positive square root in view of the 
fact that r has been defined as a positive quantity. Starting the 
integration at 5 

II 

and/- 1, we find 

1 
s~-s, =- K-7-)[-f(»—>: 

- d - r ) [ - i - ( l + r ) + c o s 7 ] ] . (43) 

If r = r2 when 5 = s2 we can sum this special case of equation 
(43) and equation (41) in order to get expressions for A2 in the 
profile and f planes. The considerations of this section apply 
to the inverse problems as a whole and we could extend the 
above considerations to deduce a correlation like (40) for the 
interval between A2 and 0. We shall not complete the analysis 
here, however. 

The Role of the Eigensolution 

Returning to the eigensolution as given by equation (29a), 
we recall that except for the simple poles at f = e c, the im
aginary part of uc is zero everywhere on the unit circle and the 
real part suffers a jump of magnitude TT at ±7,, on the unit cir
cle. On the other hand, we have found that the complex veloci
ty has an isolated essential singularity at these poles. 
Moreover, because of this fact, we observed that qc/U is 
bounded, being in the interval [0, 1] and according to a 
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theorem of Weirestrass, we can assign the value qc/U = 1 at 
the points yc = ± 1 on If I = 1 just as we have done before. 
We have also seen from an exploration of the flow due to an 
isolated eigensolution that the resulting profile is smooth and 
that its wetted surface is smooth. When the flat plate function 
u>0 and eigenfunction oc are combined, the resulting profile 
will have a stagnation point at /3 = y, as we shall discuss 
below. 

As we have remarked above, our plan is to write the 
logarithmic hodograph as the sum of the flat plate function 
wD, the eigenfunction wc and regular function a^. Thus 

(44) «(f)=w0+«c + a>i = 0 o + 0 c + 0, +fln 

Consequently, 

Q QoQcQi 

U LP ' 

" Qo 

I U 

Qc 

U 

Q\ 

U 

(45) 

The composite function, q/U, is prescribed from the outset. 
Equation (37) which has been defined over the arc length s in 
the interval [s0, s{] corresponding to the normalized variable x 
in the interval [0, 1], provides an example of such a composite 
function. The flat plate function, qa/U, has been worked 
above. Here it will be written as 

Qo 2 ( - cos/3 + COS7) 

U ( - cos/3 + COSY)2 + (sin/3 + sin-y)2 

where the absolute sign in the numerator given previously has 
been replaced by ordinary brackets and we have made other 
changes which apply in the interval 7 < /3 s ir. Since qc/U = 
1 on If I = 1 the function qx/U follows from equation (45) 
rewritten as qx/U = (q/U)/(q0/U). For the example at 
hand, the result of this transposition cannot be used until we 
transform equation (46) from the f plane into the arc length in 
the interval [s0, st] with the help of equation (39). In par
ticular, we find that 

2R 
U R2 + suvy + Vsin27 + 2.RCOS7 -TR2 (47) 

where 

R2 U 
{s1-s0) [T-C 

1 - ( 1 - x 2 ) 3 

b1 v~' " ° ' L 2 "V 3 

Then it follows from equation (45) that 

xL x* \1 

Qi _ ^-s^xll-gyJl-xHl-JT^2)] 
U 2i?/[«2 + sinY + Vsin27 + 2i?cosf-«2] 

(48) 

As is true of q0/U, the function qt/U when represented in the 
f plane can be continued to the arc of the unit circle in the 
lower half of the f-plane in accordance with equation (14). 

Now that the well behaved function q\/U has been found 
along the arc OA{, we may return to equation (44) and note 
that the real part of w(f) is not yet known completely even in 
this interval. It will be known, however, if we can find 6{. But 
its complex conjugate TX has just been found. Of course, we 
do not know T, at all points of the unit circle because in this 
example we have not prescribed the entire pressure distribu
tion on the wetted surface, although the way in which this can 
be done is certainly clear. Once that step has been carried out, 
rt will be known on the unit circle and its conjugate Bx can be 
calculated using the customary representation of co^f) as a 
Laurent expansion, as employed by Yoshihara [8] for exam
ple. Procedures which are preferable for practical engineering 
calculations are usually based on the Poisson integral formula 
or related methods. Examples of interest for the present in
verse theory are given by Theodorsen and Garrick [16] and by 
Parkin and Peebles [17], among others. Further discussion of 
these matters is beyond the scope of this paper. 

In the course of designing a profile, the quantities which one 
specifies from the start are the design lift coefficient CL, the 
pressure (velocity) distribution on the wetted surface, the cavi
ty thickness at the trailing edge and perhaps the separation 
point of the upper surface of the cavity near the nose. The pur
pose of the eigensolution is to provide the necessary degrees of 
freedom which will permit the control of the cavity geometry 
as indicated. Added degrees of freedom can be incoporated in 
the prescribed pressure distribution if a parametric approach 
is used. It might be possible to lower the cavity drag somewhat 
by adjusting them although the prescription of cavity 
thickness is probably more important in this regard. The out
come of the design process will be coordinates of the profile 
and cavity shape, including the separation point; the attack 
angle, a; and the drag coefficient CD. The eigensolution 
strength, E/b, will also be determined in the course of the 
calculations. 

Conclusions 

The chief finding of this paper is that one can construct 
many singular eigensolutions for the exact inverse problem of 
two-dimensional cavity flow at zero cavitation number. From 
among these, we have chosen that single eigensolution which 
provides the correct branching of the flow at its singularity, it 
also appears to offer the least disturbance to the upstream 
flow field inclination of any cavity flow which does not 
already include a point-drag solution as one of its elements. 
This particular choice also seems to offer the greatest 
analytical convenience. The physical conditions satisfied by 
this eigensolution are: 

(1) At points on the cavity and on the wetted surface of the 
profile, the flow velocity is equal in magnitude to the 
free-stream velocity. Consequently, except for the 
singular point the pressure coefficient is zero on the wet
ted and cavity surfaces. 

(2) The point-drag solution vanishes at infinity, but it does 
have a bounded essential singularity on the wetted sur
face and it produces no singular velocities or pressures 
in the flow or on the profile surface, 

(3) This function produces no additional flow inclination 
on the entire upsteam stagnation streamline. 

A specific example of the flow geometry represented by an 
isolated eigensolution has been given above to show how this 
function can produce round-nosed profiles. In general, it is 
found that the point-drag solution produces a widening of the 
cavity which is directly proportional to its strength. An in
cremental cavity drag accompanies this widening and this drag 
is proportional to the square of the eigensolution strength. No 
lift is produced by the point-drag function when its location 
coincides with that of the stagnation point on the profile sur
face. In contrast to the linearized theory, the complementary 
function singularity need not be at the stagnation point. But 
when the singularity is located between the stagnation point 
and the upper separation point, a negative incremental lift is 
produced. If the singularity is on the lower surface, 
downstream of the stagnation point, a positive life increment 
is found. Whether or not it is better to position the eigensolu
tion at some point on the profile instead of at the stagnation 
point remains to be studied. 

As a result of these findings, it appears that an eigensolution 
exists for the nonlinear theory of cavity flow at zero cavitation 
number and that it is now most likely that a similar eigensolu
tion can be found for such fully cavitating flows at cavitation 
numbers which are greater than zero. The results found so far 
suggest that the nonhnearized theory and the linearized 
theories parallel one another very closely as far as the nature 
of their point drag solutions are concerned. But the present 
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results exhibit some features which are lost in the process of 
linearization. 
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An Optical Method for 
Determining Bubble Size 
Distributions—Part I:Theory 
A new optical technique is developed to determine the size distribution of bubbles in 
a two-phase flow. Implementation involves passing a narrow beam of light through 
the bubbly flow and monitoring the transmitted light intensity. The basic units of 
data are the rate at which each bubble blocks off the beam and the duration of 
blockage. Adding the hypothesis that the distance of closest approach between a 
bubble's center and the beam axis is randomly distributed, a statistical analysis 
yields the bubble size distribution. 

1 Introduction 

Multiphase flow is important in both mechanical and 
chemical industrial processes. A prerequisite for a better 
understanding of these processes is knowledge of the size 
distribution of the disperse phase. Many different methods, 
with the majority concentrating on drop size measurement, 
are described in the literature. A review article by Azzopardi 
[1] cited 131 references dating back to 1938. 

The present research arose out of work on a three-phase 
fluidized bed system. Large bubbles introduced at the bottom 
of the bed broke up until typical diameters were one to two 
millimeters. The resulting bubbles, being small, were basically 
spherical, but numerous enough that even at void fractions of 
5 percent the average clear optical path through the fluid was 
only about a centimeter. 

Numerous methods have been described for obtaining bub
ble size information, but none of them are easily applied to the 
type of flow described above. Photography and related 
methods, the most widely used approaches, are fairly simple 
during the data collection stage but present analysis dif
ficulties if large sample sizes are desired. In addition, with 
congested flows, a photograph will yield data on bubbles only 
in the vicinity of a window. Light scattering technique such as 
reviewed by Billet [2] is usually limited to small particles below 
the size of 0.1 mm diameter. 

Besides photography and light scattering, another optical 
approach which has received considerable attention in the past 
ten years is laser-doppler anemometry (LDA) extended to two-
phase flows. There are basically four distinct varieties of this 
approach which have been described. The most widely used of 
these utilizes a relationship between particle size and a signal 
characteristic such as doppler amplitude or modulation depth. 
The technique is most readily applied to bubble or particle 
sizes up to a few hundred microns (Ungut et al. [3], Yule et al. 
[4], Lee and Srinivasan [5, 6],) although Martin et al. [7] ob-

1 Present Address: General Motors Research Lab., Warren, MI. 
Contributed by the Fluids Engineering Division for publication in the JOUR

NAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering 
Division January 5, 1987. 

tained a unique relationship between signal visibility and bub
ble size for diameters up to one millimeter. At its best, this ap
proach is therefore restricted to rather small bubbles. 

The second varient of LDA is that described by Durst and 
Zare [8], In their technique the two light beams, either re
flecting off of or refracting through a bubble, generate in
terference fringes in the surrounding space. Bubble size can 
then be calculated from the fringe spacing. The main difficulty 
with this method appears to be the size measurement of mov
ing fringes as bubbles pass through the beam. The authors 
know of no studies of practical flows utilizing this technique. 

In a more recent approach, Lee and Srinivasan [9] combine 
LDA determined bubble velocities with reference beam 
blockage times to yield diameters. This technique appears 
capable of yielding high quality size information, but it re
quires rather involved signal processing. This is especially true 
if number density distributions are desired. 

The last LDA technique is that of Semiat and Dukler [10]. 
In their work, the light fringes required for LDA are generated 
by Ronchi gratings rather than crossed beams. This serves to 
simplify the optics and make the overall approach more 
workable in practial applications. Indeed, their work appears 
to be the only LDA type with which actual size distributions of 
relatively large bubbles (diameter up to several millimeters) 
have been obtained. Even so, the approach is still fairly com
plex when compared to the method to be presented here and 
its use was only demonstrated in bubbly flows of low number 
density. 

In addition to photography and LDA methods, there are, of 
course, other approaches. Wu [11] describes a very simple op
tical method, but it is dependent upon the particles passing 
through the central portion of a light beam. Both fiber optic 
and conductivity probes (Buchholz and Schugerl [12, 13]) have 
also been used to determine bubbles sizes. Due to the fact that 
such probes must pierce the bubbles, these authors stated the 
techniques were applicable only down to bubble diameters of 
0.6 millimeters for the conductivity probe and 1.0 millimeters 
for the optical probe. However, Herringe and Davis [14], also 
using the conductivity approach, claim detection of bubbles 
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Fig. 1 Typical signals from light beam probe (50 ;<s between data 
points) 

down to 0.1 millimeters with a probe whose tip diameter was 
0.08 millimeters. For smaller bubbles, probe techniques suffer 
from the fact that bubbles may bounce off the probe or, in 
some cases, even stick to the probe. For organic fluids where 
the electrical conductivity is comparable to that of the gaseous 
medium, the electrical probe technique is generally not 
satisfactory. 

Calderbank [15] described a clever and simple bubble size 
measurement method based upon blockage of a light beam. 
Regrettably, it yields only the Sauter mean diameter and re
quires knowledge of the local void fraction. Many other 
methods are presented by Azzopardi [1], but again none of 
them are easily applied to the type of flow under 
consideration. 

2 The Light Beam Technique 

As opposed to many of the above-mentioned methods, the 
light beam technique, as it will be referred to, is experimental
ly very simple and requires no tedious data reduction. Im
plementation involves passing a single light beam of known 
diameter and path length through the two-phase region of in
terest. The requirements on the beam are that its diameter 
should be approximately equal to that of the smallest bubbles 
on which data is desired and its length such that the probabili
ty of more than one bubble in the beam at once is minimal. 
The raw data which must be obtained for analysis are gathered 
by measuring the fraction of the beam which passes unblocked 
through the test region. The analysis procedures are involved, 
but once the computer routines are set up the data reduction is 
automatic. 

This paper outlines the light beam technique and the accom
panying paper by Meernik and Yuen [16] shows an applica
tion. The detail is contained in Meernik [17]. There are two 
keys to the light beam technique. The first is the determination 
from bubble signals (typical examples of which are shown in 
Figs, la, b) of both the light blockage rate and duration. 
Assuming the bubbles are spherical and move at a constant 
velocity while in the beam, the blockage rate and duration, as 
shown in Fig. 2, are functions of 

(a) r= bubble radius 
(b) s = distance of closest approach measured between the 

bubble's center and the light beam axis 
(c) v = speed of the bubble in the plane perpendicular to the 

light beam. 

With two measurable quantities and three unknowns, bubble 
size cannot be determined directly. However, considerable use 
can be made of the fact that bubbles will pass through the 
beam with random s values. Realization of this statistical fact 
is the second key item. Blockage rate and duration data, and 
the statistics of s, are the basis of the analysis method 
presented here. Before continuing, a few points concerning 
bubble speeds should be emphasized. First, whenever bubble 

Nomenclature 

A = matrice with element Ay 
Ay = expected fraction of counts due to bub

bles whose actual radii lie within the fth 
interval, but which will have apparent 
radii in the y'th interval 

E(x) = expected value of a random variable, x 
/ ( / ) = fraction of clear paths whose lengths 

are greater than / 
fD(r) = u/w = ratio between the actual speed 

of a bubble towards the beam axis and 
the calculated speed (which is based 
upon the straight edge assumption) 

G = diagonal matrix with element G, 
G, = see equation (9) 

g(r,v) = probability per unit speed that a bubble 
of radius r would have a speed v in the 
plane perpendicular to the light beam 

H = diagonal matrix with element hy 
hy = see equation (12) 

I(r) = number of bubbles per unit radius 

about r that lie within a distance s,„ (r) 
of the beam axis per unit length of the 
beam 

IT = J? I(r)dr 
I = length of the light beam 

n = 
N = 
P = 

PhPi+i = 

Q = 
Q, = 

r 
r5o(r) 

R(r,v,s)drdvds 

R 
Ryj 

R7 

r, 

number density of bubbles 
column vector with the «,• as elements 
apparent bubble radius = (rw)/2 
values defining the range of the ;th ap
parent size interval 
column vector with element Q, 
rate at which bubbles with apparent 
radius in the /th interval pass through 
the beam per unit length 
bubble radius 
distance bubble's center must be from 
the beam axis to block 50 percent of 
the light beam 
expected rate at which bubbles with 
(a) radii between r and r + dr 
(b) speeds between v and v + dv 
(c) and closest approach distances be
tween s and s + ds intersect the beam 
per unit length 
see equation (8) 
column vector with element /?,• 
see equation (11) 
column vector with element Ryi 

(pi+l+Pi)/2 
distance of closest approach measured 
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Fig. 2 Bubble/beam intersection geometry 

speed is referred to, what is implied is the speed of the bubble 
in the plane perpendicular to the light beam. Any component 
of the velocity parallel to the beam does not influence the 
data. Secondly, although the focus of this paper is on size 
distributions, the technique also yields, as a function of bub
ble size, the mean speed of the bubbles of the plane perpen
dicular to the light beam. 

In the following, we shall first discuss in detail the interac
tion of a single bubble with the light beam. Next, organization 
of the raw data is covered. That is followed by a determination 
of the relationship between actual size and speed distributions 
and the measured data. Finally, a means of properly normaliz
ing the data is developed. 

2a Analysis of a Bubble Encounter. Utilization of the 
light intensity versus time data requires a detailed analysis of a 
bubble-beam encounter. The analysis using geometric optics is 
shown in Appendix A. The result shows that for an optical 
system consisting of a laser beam and aligned injection and 
receiving optical probes of narrow field of view, any portion 

of the light beam intersecting a bubble will, for all practical 
purposes, be completely masked off. 

Consider now a bubble cutting partially through the beam 
as shown in Fig. 2. For the present, assume the bubble's radius 
is sufficiently large that its edge in the region of the beam is 
essentially straight. By measuring the amount of light that is 
not blocked by the bubble, and knowing the intensity profile 
of the beam (Gaussian), the position of the edge of the bubble 
relative to the beam center can be determined. Consequently, 
a sequence of intensity measurements as the bubble cuts 
through the beam yields the bubble interface position versus 
time. It is thus possible to obtain 

u = the component of bubble velocity towards the beam at the 
instant of 50 percent light blockage. 

In addition, one can obtain 

r = the amount of time that a bubble blocks off more than 50 
percent of the beam. 

The quantities r and u can be expressed as 

T = ( 2 / i 0 ( r 2 - s 2 ) l / 2 

u = v(r2-s2)[/2/r 

(1) 

(2) 

These equations yield the values of T and u that would be 
measured for a large, spherical bubble passing through the 
beam. However, if the edge of a bubble cutting the beam can
not be considered straight, these equations are in error. Cor
rection for edge curvature effects can be made with the aid of 
the following definitions: 

r50 (r) = distance between a bubble's center and the beam 
axis at which it blocks 50 percent of the beam. 

w = speed at which a straight edge cutting through the 
beam would yield the measured rate of change of 
light intensity at the instant of 50 percent light 
blockage, 

and /„ (r) = u/w = ratio between the actual speed of the bub
ble towards the beam axis and the calculated 
speed based upon the straightedge assumption. 

Since a bubble profile must be assumed before speed can be 

Nomenclature (cont.) 

sm(r) = 

T = 

V 
Vf 

z(rj)j) 

a 

between the bubble's center and the 
light beam axis 
maximum closest approach distance for 
a bubble of radius r subject to the con
straint that /3>/30 

system matrices for evaluating Q data, 
- A r G 
system matrix for evaluating T data, 
- A r H 
speed of a bubble in the direction 
toward the beam axis at the instant of 
50 percent light blockage 
true speed of a bubble in the plane 
perpendicular to the light beam 
average speed of bubbles with radius in 
the /th interval 
diagonal matrice with element i>{ 

speed at which a straight edge must 
pass through the beam to yield the 
measured rate of change of light inten
sity at the instant of 50 percent light 
blockage 
rx(r) • ll-(fr(.r)-Pj)/rSQ(r)]l/2 

void fraction 

a, = average void fraction of bubbles with 
radius in the /th interval 

a(r)dr = void fraction per unit radius of bubbles 
with radii about r 
maximum fraction of the light beam 
blocked during the passage of a given 
bubble 
value which /3 must exceed for a bubble 
to be considered 
(T/2W) 1 / 2 = weighting function for fre
quency distribution 
column vector with element T, 
see equation (7) 
Kronecker delta 
mean clear path length between bubbles 
time duration of the light blockage by a 
bubble (time during which the light 
beam signal is below 50 percent) 
angle 

Superscript 

Subscript 

0 = 

7 = 

r 

h x 

T = transpose 

/ = with radii in the /th interval 
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calculated (and a straight edge is the simplest to use), the 
quantity experimentally obtained is w, not u. 

With the above definitions, equations (1), (2) can be rewrit
ten to yield the measured blockage time and speed. 
Substitutingr50(r) for r, and using w = u/f„(r), 

T=(2/v)[rUr)s2]l/2 (3) 

w=v[rl0(r)-s2y/2/[r50(r).fv(r)] "(4) 

The two measurable quantities are thus expressible in terms of 
the parameters r, s, and v, along with the functions r50(r) and 
Mr). 

2b Organization of the Light Beam Data. The T and w 
values can be combined to yield a new quantity 

For bubbles with negligible edge curvature effects, it is easy to 
see that/? = r when 5 = 0. p will therefore be called the apparent 
radius. In general, for an arbitrary size bubble and arbitrary 
off-center distance, 

p = {U2)TW=lr\o(r) s2]/[r5g(r)•/„(/•)] (5) 

From equation (5) it is seen that as the distance of closest ap
proach between a bubble's center and the beam axis increases 
from zero to r50(r), p decreases from approximately r to zero. 
This is a consequence of decreases in both the time the bubble 
is in the beam and the component of bubble velocity toward 
the beam as the parameter s increases. For s = rso(r), the bub
ble, when it is closest to the beam, blocks only 50 percent of 
the light. The resulting signal would look similar to the first in
tersection shown in Fig. 1(b). In such a case, or anytime 
s>r50(r), there are insufficient data to determine w. A criteria 
must therefore be incorporated into the analysis which deletes 
from consideration any signal that does not drop low enough 
to yield usable data. For this purpose, define, 

sm (r) = distance between a bubble's center and the beam axis 
at which some fraction, /3, of the light beam is 
blocked. 

As a practical matter, it was found convenient to require at 
least 75 percent beam blockage for a bubble to be counted. 

With true bubble size not available, the approach taken in 
organizing the data was to use the apparent sizes. Specifically, 
the frequency of bubble intersections as a function of ap
parent radius was determined. The range of apparent sizes was 
discretized into logarithmically equal intervals and a vector Q 
defined as the relative frequency distribution of apparent 
sizes. 

From the Q data vector, one can determine the product n,v,-, 
(number density times average velocity of bubbles in each size 
range) but not the individual n, and v-t values. This difficulty 
was overcome by weighting each bubbles contribution to the 
frequency distribution of apparent sizes by a function inverse
ly proportional to the bubble's velocity. The function chosen 
is the square root of T/W, which not only is inversely propor
tional to velocity, but is independent of the parameter, s. 
Thus, define 

y=(T/2w)i/2 = [r50(r).fv(r)r/2/v (6) 

Utilizing y, the weighted frequency distribution of apparent 
sizes (to be labeled T) can be constructed with elements 

r,= E T (7) 
path interval 

The data contained in the Q and r vectors are now sufficient 
for determining size and average speed distributions. 

2c Determination of Expected Data from Assumed Size 

and Speed Distributions. The relationship linking actual size 
and speed distributions to the measured data can be deter
mined by considering what data would result from 
hypothetical size and speed distributions. In particular, 
assume 

a(r) = void fraction per unit radius of bubbles with radius 
of r, 

g{r,v) = probability per unit speed that a bubble of radius r 
would have a speed v in the plane perpendicular to 
the light beam, 

and define 

R(r,v,s)drdvds- the expected frequency at which bubbles 
with 
(a) radii between r and r + dr 
(b) speed between v and v + dv 
(c) and closest approach distance between s 

and s + ds intersect the beam per unit 
length and are counted. 

Under the assumption that bubble/beam interactions are 
equally probable for s between 0 and s„,t it can be shown that 

R(r,v,s)drdvds = (3/27r)(a(r)/ri)g(r,v)vdrdvds 0<s<s„,(r) 

= 0 s>sm(r) 

Defining R, as the rate at which bubbles with actual radii in 
the interval [phpi+ x ] intersect the beam, we have 

(Pi+l f sm( r ) f °° 
7?,= dr\ ds\ dvR(r,v,s). 

Jpjdv JO Jo 

If the average speed is defined as 

v(r) = \ g(r,v)vdv 
Jo 

and a(r) and v(r) are assumed to be uniform and respectively 
equal to a, and v, in the z'th interval, then 

Rl = (3/2x)alvl\
P'+1 (sm(r)/ri)dr. (8) 

J p. 

This expression can be converted to explicit number density 
dependence by assuming that all bubbles within the rth interval 
have the radius 

/ • / = ( / > , • + 1 + / > ; ) / 2 

and defining 

«,- = number density of bubbles whose radii fall within the rth 
interval. 

Then 

4 
a ; (A+i-A-) = - j - T r X 

Now define 

G, = \lr] • J^'+ ' [(*,„ {r)/ri)drV(pi+, -p , . ) ] (9) 

and rewrite equation (8) as 

R = GVN (10) 

where 

G = G,-5(/ and V = !},5,>' 

Similarly, the expected value of the inverse velocity 
weighted frequency at which bubbles in a given size range will 
pass through the beam, Ryi, can be written as 

f / + l (,sm<r> f00 

Ryi=\ dr\ ds\ dv[[r50(r) 

Jpj JO JO 

•fv(r)]1/2/v]R(r,v,s) (11) 

By defining 
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2rfSii fPi+i 

(Pi+i-Pi) J " ; 

'f„(r)Yn-sm{r)/rndr (12) 

Equation (11) becomes 

R 7 =HN (13) 

In order to relate the expected values of Qt and T,- to R, and 
Ryi, it is necessary to know the relative rate at which bubbles 
with radii within the fth interval intersect the beam in such a 
way as to have an apparent radius within they'th interval. This 
quantity, to be called Ajjt can be expressed as 

A = AU= dr\ ds\ dvR(r,v,s) (14) 
Rj J Pi Jz<,r,Pj+l) JO 

where z{r, Pj) is the value of s which would result in an ap
parent radius of Pj for a bubble of radius r. Specifically, 

z(r,Pj)=r50(r)'[l-(fv(r).pj)/rS0(r)]
W2 

0<z(r,pj)<sm(r) 

Thus, the expected value of T and Q are given by 

E(D = ATRy (15) 

£(Q) = A r R (16) 

Substituting equation (10) and (13) into equations (15) and 
(16), 

T N + £ ( r ) = 0 (17) 

TVN + £(Q) = 0 (18) 

where 

T = - A r H and f = - A r G 

and superscript T denotes transpose. Equations (17) and (18) 
can be used to determine N and V for given Q and I \ 

In developing the above equations, it was implicitly as
sumed the duration of the data collection period was one unit 
of time. It is for that reason the rate quantities are not accom
panied by a time duration. In addition, the beam length was 
not explicitly considered. Equation (17) will therefore yield the 
shape of the number density curve, but not its correct 
magnitude. The details of properly normalizing this informa
tion are considered next. 

2d Normalizing the Number Densities. Define 

n(r)dr = the number density of those bubbles which have 
radii between r and r + dr, 

I(r)dr = the average number of bubbles per unit length of 
the beam with radii between r and r + dr and whose 
centers lie within a distance sm(r) of the beam 
axis. 

From these definitions, it follows that the average number of 
bubbles per unit length is 

IT= ( " I(r)dr= (°° -Ksl,{r)n(r)dr (19) 
Jo Jo 

The quantity IT can be determined by passing a light beam 
through a distance / of the fluid and monitoring the transmit
ted light fraction. Whenever a bubble's center is within the 
distance sm (r) of the beam axis, the transmitted light will be 
less than (1 —/3). Conversely, whenever the transmitted light is 
measured and found to be greater than (1 -/?), this indicates 
there are not bubbles within a distance sm (r) of the beam axis. 
If this sampling is done multiple times, a determination can be 
made of the fraction of paths which have clear path lengths 
(i.e., no bubbles within s,„ (r) of the beam axis) greater than /. 
This quantity will be labeled/(/) . 

The concept of a mean clear path length, defined by 

\=\/IT 

can be used to relate IT to / ( / ) . If a random spatial distribu
tion of bubbles is assumed, the fraction of paths with a clear 
path length greater than a given distance, /, will be 

/ ( / ) = e x p ( - / / X ) = e x p ( - / . / r ) 

Knowing the value of/yields 

IT=-ln(f)/l (20) 

Substituting IT from equation (20) into equation (19), the pro
per normalizing factor for N is determined. 

3 Statistical Analysis of the Light Beam Data 

As shown, it is possible to take the light beam data (i.e., the 
vectors Q and T) and calculate the size distribution and 
average speeds which would have these measured quantities as 
the theoretically expected values. In the measured data, 
however, there are statistical fluctuations which mask the true 
expectation values. Thus, the desire is not to determine the 
bubble size distribution for which these Q and T would be 
precisely the expected values, but rather what is wanted is the 
"smooth" distribution for which the data would constitute a 
likely set of measurements. 

If the form of the functions describing the size distribution 
and average speed were known a priori, then a straightforward 
least squares process to determine the curve parameters could 
be used. Some arguments concerning the type of equation 
which should fit the speed data could be made, but there is 
very little literature on bubble size distributions. Thus, rather 
than force the data to fit a specific type of equation, a general 
approach was taken utilizing cubic splines, which would let the 
data determine the shape of the size distribution. 

In the inversion procedure with cubic splines, both the large 
and small ends of the number density distributions often show 
a significant amount of uncertainty. At the large end, the 
uncertainty is due to a shortage of statistics on the very large 
bubbles. This is a limitation of the technique and a point 
which must be considered in deciding whether the technique is 
appropriate to a given problem. At the small end, the difficul
ty is due to "pollution" of the small bubble statistics by large 
and medium size bubbles which passed through the beam off-
center. In the author's experience, however, the void fraction 
contribution from the small bubbles with poor statistics was 
completely negligible. 

4 Testing the Analysis Procedures 

The computations involved in analyzing a set of data are 
rather involved. Thus, to ensure proper functioning of the 
routines, a test was performed on a set of data for which the 
" t rue" size distribution was known. Such a data set was ob
tained via a Monte Carlo simulation program. Input consisted 
of specified size and speed distributions, and the code's output 
was a simulated set of data. Shown in Fig. 3 are both the 
specified void fraction distribution and the distribution 
generated by analyzing 2000 simulated bubble intersections. 
The error bars indicate the statistical uncertainty due to the 
finite amount of data. The closeness of the match gives 
assurance that the methods specified are sound in both theory 
and implementation. 

5 Accuracy Evaluation of the Light Beam Method 

It has been shown how the data collected from the light 
beam probe can be analyzed to yield size distributions and 
average velocities. This work was based on the assumptions 
that the bubbles were spherical and that they traveled in 
straight lines at constant speeds while in the beam. Just how 
rigidly these assumptions must hold will now be considered. 
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5a Effects of Nonspherical Bubbles in the Data. The 
bubbles that pass through the beam will not be perfectly 
spherical and will, therefore, generate apparent size distribu
tions different than those of spheres. It is generally known 
(Clift et al. [18]) that small bubbles take on an oblate ellipsoid 
shape, with the short dimension oriented vertically, when sur
face tension is not quite sufficient to keep them spherical. If 
such bubbles rise through the beam with no horizontal motion 
or tilting of the vertical axis, their resulting signals will be in
terpreted as being due to spheres with diameters approximate
ly equal to the short dimension of the ellipsoid. In turbulent 
flows, however, due to wobble and movement in random 
directions, bubbles will yield signals which indicate a spread of 
diameters. To study these effects, a computer simulation in
volving random orientations of an oblate ellipsoid was under
taken. The result, shown in Fig. 4, is a distribution of sphere 
sizes which would produce the same data. In Fig. 4, the 
horizontal scale is logarithmic with sphere size distribution 
divided into logarithmically equal interval. If the short dimen
sion of the ellipsoid were aligned with the flow, the percentage 
number in the column with sphere diameter between .88 and 
.92 would be 100 percent. For random distribution, the data is 
smeared with a bias toward the 1.05 diameter. The negative 
number percent between diameters .84 and .88 is a conse
quence of an apparent size distribution which is impossible to 
obtain with spheres. For nonspherical bubbles, it is clear that 
the resolution of the method will decrease with increasing 
deviations from sphericity, but for small deviations (less than 
20 percent difference between principle diameters), the results 
will remain fairly reliable. 

5b The Constant Speed Assumption. The effects of 
assuming the bubbles having a constant velocity while in the 

beam can be determined through a relaxation of that require
ment. The result, from Meernik [17], is that small constant ac
celerations introduce, to the first degree, no biases in the data. 
Once again, therefore, the effect of bubbles not conforming to 
a stated assumption is simply a decrease in the method's 
resolution. 

7 Summary and Conclusion 

The described light beam technique can be used to deter
mine the size distribution of spherical, or nearly spherical, 
bubbles. Implementation of the method involves monitoring 
the transmitted intensity of a collimated light beam passing 
through the bubbly media. The light beam diameter should be 
less than the diameter of the smallest bubbles on which data 
are desired, while the optical path length should be long 
enough to accommodate the largest bubbles but short enough 
so that the probability of two bubbles crossing the optical path 
simultaneously is small. For each bubble that passes through 
the beam, the duration of the light blockage and the rate at 
which the bubble cuts through the beam is measured. By 
assuming the distance of closest approach between any bub
ble's center and beam axis to be random, a statistical analysis 
of a collection of data yields size distributions. 
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A P P E N D I X A 

Laser Beam Refraction by a Bubble 
Figure 2 of reference [16] shows a typical laser beam system 

for the present study. Both the laser injection and receiving 
probes which are 10 mm apart have a tip with an inside 
diameter of 0.38 mm to minimize flow disturbance and to pro
vide a narrow field of view. The two probes are initially 
aligned such that a Gaussian laser beam from the injection 
probe, which is focused by a 100 mm focal length lens to give a 
beam waist diameter of approximately 120 fum, will be col
lected in the receiving probe by a 1 mm diameter optical fiber. 
The field of view of the receiving probe is such that a refrac
tion of the laser beam by an angle of 0.02 radian is sufficient 
to miss the light collecting optical fiber inside the receiving 
probe. This means that for the present system, a light ring at ^ 
= 0.2 r will not be collected by the present probe. Detail of the 
probe design is shown in reference [17]. 

For a finite size Gaussian beam, even if the beam axis passes 
through the center of the bubble (s = 0), not all the beam 
energy will be collected by the receiving optics. For the present 
optics with a Gaussian laser beam diameter of 120 fim (1/e2 

diameter), the maximum fractions of beam energy that are 
collected is significant only for bubble diameters above 2.5 
mm. For example, at r = 1.0 mm, the fraction is .05, at r = 
2.5 mm, the fraction is 0.29 and at r = 5 mm, the fraction is 
0.75. Thus, if the beam passes centrally through a large bubble 
(larger than 2.5 mm), a signal such as shown in Fig. Al could 
result. However, the same signal could result from two bub
bles passing through the beam very close together. 

In our particular work, in which the number of large bub
bles was small compared to the number of bubbles less than 
2.5 mm in diameter, we guarded against the possibility of 
counting two small bubbles as a single large bubble. A set of 
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Signals from light beam probe near center of the bubble 

four criteria were developed which were required to be 
satisfied before the signal would be interpreted as coming 
from a single large bubble. 

1. The signal had to go to zero on both sides of the central 
hump. 

2. The maximum value of the hump had to be less than 30 
percent of the full signal. 

3. Speeds determined from the entrance and exit slopes 
had to agree within 15 percent. 

4. The difference in duration of the two halves of the 
signal had to be less than 30 percent of the total signal dura
tion. 

These criteria are admittedly somewhat arbitrary, and will 
result in the dismissal of at most a few percent of the data on 
the largest bubbles. It is, however, a reasonable means of deal
ing with those relatively few cases in which the bubble cannot 
be considered opaque. 
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An Optical Method for Determining 
Bubble Size Distributions—Part II: 
Application to Bubble Size 
Measurement in a Three-Phase 
Fluidized Bed 
The light beam technique, described in Part I of a paper with the same title, was ap
plied to a three-phase system [nitrogen, organic solvents, and glass particles) to 
study the equilibrium bubble size distributions. A range of liquid and gas flow rates, 
with respective superficial velocities of 1-8 cm/sec and 0.1-1.1 cm/s; and various 
particles, 2 mm diameter by 5 mm long cylinders and 1 to 5 mm diameter spheres, 
were considered. Typical average bubble diameters were measured to be in the range 
of 1.2 to 2 mm. For the range of flow conditions considered, the Sauter mean 
diameters, normalized by particle size, were found to be proportional to the Eotvos 
number and essentially independent of the liquid and gas fluxes. 

1 Introduction 

The purpose of developing the bubble size measurement 
technique, presented in the previous paper by Meernik and 
Yuen [1], was to determine the factors controlling bubble sizes 
in a three-phase fluidized bed. In this paper we describe the 
application of the light beam method of measuring bubble 
sizes and, based upon collected data, develop a nondimen-
sional expression relating bubble sizes to system parameters. 

A fair amount of literature exists concerning different 
aspects of three-phase fluidized beds. Of these who have 
measured bubble sizes, Massimilla [2], Rigby et al. [3], and 
Page and Harrison [4] confined themselves to beds of small 
particles (about one millimeter in diameter or less). With water 
as the liquid phase, this resulted in average bubble sizes in the 
4 to 20 mm range. The smaller sizes were generally measured 
at the gas distributor, with diameters increasing due to 
coalescence as the bubbles rose through the bed. Those who 
have studied beds of larger particles, one to eight millimeter 
diameters, include Lee [5], Kim et al. [6, 7], Bruce and Revel-
Chion [8], and Lee and Buckley [9]. References [6-8] looked 
at gas fluxes in ranges of industrial importance (superficial 
velocities of approximately 5 cm/s and higher) and measured 
average bubble sizes from 6 to 80 millimeters. Reference [5] 
provides some information on a water fluidized bed of six 
millimeter diameter particles in which air bubbles broke up 
until average diameters of roughly 2.4 millimeters were 
achieved. The gas flux was 4 cm/s. In references [9], informa
tion is provided on bubbles in both water and octanol fluid-
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ized beds of four and six millimeter diameter particles. At low 
gas fluxes with the six millimeter particles, average bubble 
sizes were stated to be 1.9 mm and 1.3 mm for, respectively, 
water and octanol. These diameters given by reference [5], 
along with reference [9], are much less than those quoted by 
the other two investigators for beds of six millimeter diameter 
particles. The discrepancy is probably due to the fact that 
reference [8] used a rather short settled bed height (32 cm), 
while references [6 and 7] were primarily interested in much 
higher gas fluxes (superficial velocities up to 53 cm/s). 

Despite the above investigations, there is currently very little 
understanding of the breakup and coalescence mechanisms 
which determine bubble sizes in three-phase fluidized beds. 
Due to this lack of understanding, one cannot, working from 
information in the above cited papers, predict with much con
fidence what bubble sizes would be expected in other systems 
with different fluids and/or particles. This paper addresses 
that problem. 

2 Experiment 

Before considering the hardware involved in applying the 
light beam technique, the fluidized bed system (Fig. 1) in 
which the measurements were made will be described. The col
umn containing the bed was approximately 3.66 m high and 
15.2 cm in diameter. It was made up of four, 61 cm long, 
pyrex glass pipe sections. These sections were separated and 
held in place by four spool pieces. These pieces had both 2.54 
cm and 1.27 cm diameter access ports. Inlet and outlet 
plenums made up the remainder of the column. 

Accessory equipment associated with storing and moving 
the liquid included a .435 m3 holding tank and a magnetic 
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Table 1 Fluid properties 

Chemical 

Dipropylene 
Glycol 
Monomethyl 
Ether 

Diphenyl 
Ether 

Density 
(gm/cm3) 

0.951 

1.073 

Viscosity 
(cP) 

10"3 NS/m3 

3.22 

3.92 

Surface 
tension 

10"3 N/m 

28.82 

42. 4 

Refractive 
index 

1.4191 

1.5792 

% in 
mixture 

66 

34 

Mixture 0.991 
3.21 29. 1.4742 

'20 °C, 225 °C, 330 "C, 4Calculated based upon chemical formula. 

Table 2 Particulate properties 

66 

Particles 

2 x 4 mm 
Cylinders 

1 mm Spheres 
2 mm Spheres 
3 mm Spheres 
5 mm Spheres 

Density Average dimensions 
(gm/cm3) (mm) 

2.24 Diam. 2.1, Length 5.7 
2.49 1.10 ± 0.10 
2.49 2.04 ± 0.07 
2.49 2.99 ± 0.07 
2.49 4.96 ± 0.06 

Type of glass 

Pyrex 
Soda Lime 
Soda Lime 
Soda Lime 
Soda Lime 

GAS EXHAUST 

LIQUID FLOW 

COMPRESSED 

NITROGEN 

TANK 

GAS 

REGULATOR 

Fig. 1 Schematic of experimental setup 

drive pump. The gas supply was provided by tanks of 
nitrogen. It was routed into the column via the bottom most 
spool piece and a gas sparger. The sparger was a length of .95 
cm diameter copper tubing which spanned the diameter of the 
column. Five, 1.6 mm diameter holes spaced approximately 
2.54 cm apart served as a means of injecting relatively large 
bubbles (a few centimeters or so in diameter) into the bottom 
of the bed. 

The initial solids used in the column were pyrex glass 
cylinders. These were nominally 2 mm in diameter and 5 mm 
long. The fluid used was a mixture of two organic solvents in a 

SPOOL PIECE 

OPTICAL 
/ F I B E R 

TO 

PHOTODIOOE 

Fig 2 Light beam method 

proportion such that the refractive index of the fluid matched 
that of the glass cylinders. The intention was to make possible 
the use of optical techniques within the bed. Property values 
of the constituent fluids and the mixture are given in Table 1. 

In addition to the pyrex glass cylinders, spherical glass balls 
with diameters of 1, 2, 3, and 5 mm were used. Basic data on 
the solids are provided in Table 2. The settled bed heights were 
approximately 70 cm. 

Figure 2 indicates the hardware arrangement used to imple
ment the light beam method. The configuration was dictated 
by beam length and diameter considerations. Beam length 
must be short enough to minimize the possibility of more than 
one bubble in the beam at once, yet long enough to allow 
larger bubbles to pass through the beam. In regards to the 
beam diameter, it must be less than the diameter of the 
smallest bubbles on which size information is desired. For the 
present experiment, where bubble sizes were primarily in the 
range of 0.1 mm to 4 mm, a beam diameter of 0.1 mm and 

N o m e n c l a t u r e 

dm 

ds 

E0 

Fr 

8 
P 

Q, 

Re 

Vf 

Sauter mean bubble diameter 
particle diameter 
a/[ApcPsg] Eotvos number 
ul/[dsg]xn Froude number 
gravitational acceleration 
apparent bubble radius 
number of bubbles with ap
parent radius in the rth interval 
Apuxds/ix Reynolds number 
liquid superficial velocity 
gas superficial velocity 
speed at which a straight edge 
must pass through the beam to 

r, 

P 

yield the measured rate of 
change of light intensity at the 
instant of 50 percent light 
blockage 
void fraction 
(T/2W) 1 / 2 = weighting function 
for frequency distribution 
summation of the quantities y 
associated with bubbles in the 
/th apparent size range 
liquid viscosity 
liquid density 

Ps-Pi 

surface tension 
time duration of the light 
blockage by a bubble (time 
during which the light beam 
signal is below 50 percent) 

Subscript 

d = diameter 
g = gas 
/ = liquid 
5 = solid 
t = total 
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Table 3 Experimental condition 

«i (cm/s) u„ (cm/s) 
Cylinders 
5 mm Sphere 
3 mm Sphere 
2 mm Sphere 

2 to 7 
4 to 8 
1 to 8 
4 to 6.5 

0.14 to 1.1 
0.14 to .44 
0.14 to .44 
0.14 

.01 to .09 

.01 to .04 

.01 to .04 

.01 

30 
h-
Z 25 
O 

£ 20. 
0-
01 15 LU I D 

CD 

§ >o. 
z 

O
l 

0. 

— D I R E C T MEASUREMENT 

---LIGHT BEAM r " " 

METHOD 

-

-
L -..J 1 

i 
! 

r—1 

1 

-
_ 

-

~ i 

_ 

L-- 1—, 
^"H^..^ 

0.82 0,90 1.00 1.62 

Fig. 

1.10 1.21 1.34 1.47 

DIAMETER(mm) 
3 Comparison of size distributions of glass balls by light beam 

method and direct measurement 

beam lengths of 10 mm or less were used. Thus, with a column 
diameter of 15.2 cm, it was necessary to use probes, as shown 
in Fig. 2, for light injection and collection. Besides being 
necessary, the use of probes makes possible local 
measurements. To minimize flow disturbance, the probe tips, 
consisting of an optical fiber enclosed in stainless steel tubing, 
were made as small as possible (0.8 mm diameter). 

The light source used was a 5 mw He-Ne laser. To simplify 
alignment problems, an optical fiber carried the light to the 
light injection probe. A single mode fiber was chosen so that 
both the coherency of the laser light and the desirable Gaus
sian distribution of the light intensity would be maintained. 
The light receiving probe, through a lens system, focused the 
transmitted light into another optical fiber which finally car
ried the light to a photodiode. The photodiode's output was 
amplified and fed to a mini-computer for digitization, storage, 
and subsequent analysis. The detail is described in Meernik 
[10]. 

For quantitative interpretation of experimental data, a 
precise measurement of beam diameter was required. The 
calibration was performed, at the start of a data collection ses
sion, by passing a piece of stainless steel tubing (diameter of 
0.82 mm) through the beam roughly ten times. Based upon 
how quickly the beam was cut off, and for how long, each 
passage through the beam yielded a beam diameter. The 
average value obtained from this process was used during the 
subsequent collection of data. The beam diameter, generally 
determined to within two percent, depended primarily on the 
focusing optics and secondarily on the alignment of the beam 
through the probes. 

Typical signals from the light beam probe are shown in Fig. 
1 of Meernik and Yuen [1], The time interval between data 
points is 50 microseconds. It was found that roughly 2000 such 
intersections yielded sufficient data for a reasonable analysis 
of the size distribution. 

As described in Meernik and Yuen [1], information from 
each bubble intersection is reduced to the duration of blockage 
(T) and the light blockage rate (w). The apparent radius p and 
weighting function 7 are then immediately given by 

p = TVV/2 

and 

7 = ( T / 2 W ) , / 2 

With the range of apparent radii discretized into 
logarithmically equal intervals (100 intervals at 5 percent in
crements), Qi and T, are calculated according to reference [1]. 
Analysis of these distributions then leads to the average densi
ty distribution. The entire procedure is involved, but a com
puter program rendered the data analysis automatic. 

As an overall check of the light beam technique, the follow
ing test was performed. With the fluid level in the experimen
tal column approximately 30 cm above the probes, glass balls 
with an average diameter of 1.2 mm were sprayed with a 
stream of air into the top of the column. Light beam data were 
then collected as the balls fell through the beam. 

Histograms of the glass ball size distribution as determined 
by both the light beam method and measurements on optically 
magnified particles are shown in Fig 3. As can be seen, there is 
only about a five percent difference between the means of the 
two distributions although in a given size range the difference 
can be as large as 50 percent. The sample size was large enough 
that the differences are considered to be primarily due to 
systematic rather than statistical error. In particular some of 
the difference is believed to be a consequence of the nonideal 
spheres (approximate average difference between maximum 
and minimum diameters for a given ball was 5 percent), and 
the relative coarseness of the measurement intervals when 
compared to the width of the distribution. Based upon this in
formation, the mean bubble size data presented in this paper is 
expected to have errors of less than 5 percent. 

Returning now to the fluidized bed system, data collected 
with the light beam method involved a range of liquid flows 
such that bed conditions from incipient fluidization up to at 
least 75 percent bed expansion were achieved for all but the 
five millimeter diameter particles. The maximum bed expan
sion with the five millimeter spheres, 40 percent, was 
somewhat less due to the limited flow capacity of the system. 
Gas flow rates were generally restricted so that void fractions 
remained below five percent. This limitation was due to dif
ficulties, to be discussed below, in obtaining good data at 
higher void fractions. Table 3 depicts the range of conditions 
at which data were obtained for each of the different particle 
sizes. 

Void fractions above five percent resulted in data collection 
problems. Probes had to be close enough together to minimize 
occurences of multiple bubbles in the beam, but separated 
enough to allow physical passage of the larger bubbles be
tween the probes. In most cases, calculated size distribution 
curves showed reasonable safety margins between the largest 
measured bubble sizes and the largest sizes that could be 
measured. Answers to questions concerning multiple bubbles 
in the beam, however, were not quite so straightforward. 

The possibility of biased data due to simultaneous bubble 
intersections was investigated by collecting sets of data at iden
tical flow conditions but using different beam lengths. The 
results show that if the blockage time fraction is below 15 per
cent, the effect of different beam lengths on the data is negligi
ble. Blockage fractions greater than that quantity showed pro
gressively greater effects on the size distribution curves. Of all 
the data presented in this paper, only those few cases having 
gas superficial velocity of 1.0 cm/s or higher involve blockage 
fractions greater than 15 percent. 
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Fig. 5 Normalized bubble size distributions for a fixed gas flux 
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Before going on to the results, let us address the question of 
data collection within the fluidized bed. As should be clear 
from the use of glass particles and a liquid of the same refrac
tive index, one goal of this research effort was to obtain bub
ble size information within the bed. However, even though 
one could see through the bed, the quality of data obtained 
within the bed was very poor. 

Visual observations revealed that the bubbles travel very er
ratically in the bed. They essentially "bounce" along with fre
quent stops when they get stuck beneath groups of particles. 
As a confirmation check that this was indeed the problem, one 
set of data was obtained with the probes just above the top of 
the bed and another with them just below. For each set, the 
average percent difference between the beam entrance and exit 
speeds were calculated. Theoretically, for steady bubble 
velocities through the beam, the two speeds should be iden
tical. For the case of the problem just above the bed, the 
average difference was 10 percent, but the probes within the 
bed the figure was 32 percent. Clearly the bubbles in the bed 
were not passing through the beam in a steady manner and 
data collection within the bed was deemed unfeasible. 
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DIAMETER (mm) 
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Fig. 6 Bubble speed distribution (cylinders, u1 =6.59 cm/s, ug •• 
cm/s) 
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Fig. 7 Effect of liquid flow rate on Sauter mean diameter (cylinders) 

3 Experimental Results 
3a Cylindrical Particles. The most extensive data was ob

tained using the cylindrical particles of pyrex glass. Figures 4 
and 5 show measured bubble size distributions at the column 
centerline, for a representative sample of liquid and gas flow 
rates. As can be seen, the bulk of the void fraction distribution 
for each of these cases falls within a fairly narrow size range of 
bubbles. Figure 4 shows the size distribution curves for a fixed 
liquid flux and increasing gas flux. It appears that the relative 
volume of gas in the larger bubbles increases slightly with the 
gas flow rate. Figure 5 shows, for a fixed gas flux and varying 
liquid flux, that large bubbles are more thoroughly broken up 
at the higher liquid flux. 

Even though the emphasis of this paper is on bubble 
number density and size distribution, nevertheless the bubble 
speed distribution can also be calculated. Figure 6 shows a 
typical distribution as a function of bubble diameter. The bars 
represent the statistical uncertainty due to the finite sample 
size. The data cut-off at about 0.3 mm diameter is due to the 
contamination of data in the smaller apparent size range by 
the larger bubbles. Because the small bubbles contribute in
significantly to the total gas volume, the lack of good speed in
formation on them has virtually no effect on the void fraction 
distribution. 

Figure 7 is a summary plot of the Sauter mean diameters ob
tained with cylindrical particles. These diameters have a small 
increasing trend with increasing gas flux, and a slight decreas
ing trend with increasing liquid flux. 

Figure 8 shows the nearly uniform Sauter mean diameter 
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obtained with traverses both parallel and perpendicular to the 
gas sparger. Figure 9 shows the corresponding void fraction 
distributions. It indicates some radial variation along the axis 
parallel to the gas sparger, a possible consequence of recircula
tion patterns in the bed. 

3b Spherical Particles. To check the dependence of bub
ble size distributions on particle size, beds of uniformly sized 
glass balls with diameters of 1.0, 2.0, 3.0, and 5.0 millimeters 
were studied. The physical characteristics of these balls were 
provided in Table 2. The bubble size distributions obtained 
with them have essentially the same characteristics as those ob
tained with the cylinders, except for shifts in the mean sizes. A 
typical size distribution curve for a bed of 5 mm spheres is 
shown in Fig 10. The error bars in this figure indicate the 
statistical uncertainty in the size distribution due purely to the 
finite amount of data collected. Other possible error sources, 
including multiple bubbles in the beam, bubbles too large to 
pass between the probes, the measurement of beam diameter, 
and effects of nonspherical bubbles have been considered 
elsewhere in this set of papers. The dashed portion of the 
curve indicates the number of counts in an interval (i.e., (?,•) 
dropped below four. The interval with maximum counts 
typically had 50 to 100. 

Figure 11 shows the Sauter meam diameters of bubbles for 
the 2 mm, 3 mm, and 5 mm diameter beds as a function of 
liquid and gas flow rate. The experimental data indicates that 
bubble diameter is primarily a function of particle diameter 
and is relatively independent of both the liquid and gas flow 
rate. The only exception is the data for 3 mm diameter par-
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Fig. 10 Bubble size distribution (5 mm spheres, u^ =6.59 cm/s, 
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Fig. 11 Sauter mean diameters versus liquid flow rate 

tides with ug at 0.14 cm/s and ul below the minimum fluidiz-
ing velocity of 2.4 cm/s. For this case, the mean bubble size 
reaches a minimum just before fluidization. At still lower 
liquid flow rates the mean bubble size increases. The data also 
show that the larger particles are more effective in breaking up 
bubbles; thus the mean sizes of the bubbles increase with 
decreasing size of the particles. 

With a bed of two millimeter diameter spheres, visual obser
vation shows that even at the low gas flow rate of 0.14 cm/s, 
relatively large bubbles (up to 1 cm in diameter) pass through 
the bed at the low liquid flow rates. Apparently, 2 mm 
diameter particles are marginal in breaking up large bubbles 
and require the assistance of fluid motion produced at the 
higher liquid fluxes. As a consequence, data were only taken 
for the 2 mm particles at a superficial gas velocity of . 14 cm/s 
and superficial liquid velocities above 4.9 cm/s. 

One millimeter diameter spheres resulted in essentially no 
breakup of large bubbles. Due to large, nonspherical bubbles, 
no light beam data were taken. One visual observation was 
that the bed height did decrease when gas flow was initiated. 
No such decrease was noted with any of the other particles. 

4 Analysis of Results 
Two definite patterns emerged from the bubble size 

distribution data. First, at void fractions of a few percent and 
with particles larger than the two millimeter diameter spheres, 
the bubbles are fairly uniform in size and generally smaller 
than the associated particles. Bubble sizes vary with particle 
sizes, but are nearly independent of the liquid and gas fluxes. 
Secondly, the smaller particles appear to lack the ability to 
break up large bubbles. The two millimeter spheres are only 
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capable of such action at very low void fractions, while the 
one millimeter spheres are apparently incapable of generating 
sufficient force to cause any bubble breakup. 

In order to account for these patterns, a two-stage bubble 
breakup model is proposed. The first stage concerns the initial 
break up of large bubbles and will be essentially qualitative. 
The second stage is quantitative and concerns the achievement 
of stable size distributions. 

Based on the present experimental results and visual obser
vations of the fluidized bed systems, it was apparent that the 
larger particles were far more efficient at breaking up large 
bubbles than were the smaller particles. Previous models, 
typified by that of Henriksen and Ostergaard [11], concen
trated on the breakup of a large bubble by a single particle 
falling through the central portion of the roof of the bubble. 
The breakup mechanism in that case is due to Taylor instabili
ty. More pertinent to fluidized beds, where particles are dense
ly packed, we propose a stripping model. It is hypothesized 
that when a large bubble rises through the fluidized bed, the 
interaction of particles with the edge of the bubble strips off 
quantities of gas whose volume, order of magnitude wise, is 
roughly equal to that of the particle. For the following 
reasons, such a mechanism would account for the inability of 
small particles to break up large bubbles: 

1) Small particles would be less likely to pass through the 
edge of the bubble since the "edge" for a small particle is a 
much smaller region that for a large one. 

2) Small particles near the edge would be much more likely 
to be swept around the bubble with the liquid flow than would 
large particles. 

3) Small particles that did pass through the edge of the bub
ble would strip off smaller volumes of gas than would large 
particles. 

The second stage of the bubble breakup model involves the 
achievement of an equilibrium bubble size distribution in a 
bed of given size particles. To begin, it seems likely the mean 
bubble size in a stable distribution of bubble sizes should be 
expressable as 

d„, =/i(Pi- Ps< ds, o, ix, «,, g) 
where dm = Sauter mean bubble diameter 

ds = particle diameter 
p, = liquid density 
ps = solid density 
a = surface tension 
fx = viscosity 

«, = liquid superficial velocity 
Ap = p s - P i 

By limiting consideration to size distributions in the case of 
low void fractions, the inclusion of gas superficial velocity is 
avoided. Through dimensional analysis, the functional 
dependence of mean diameter on the above quantities can be 
written as 

dm/ds=f2(Ap/pua/{Apd2
sg)Apuids/ix,ul/(dsg)W2) 

The dimensionless groups in this expression are: 

Ap/p, = ratio of the solid-liquid density dif
ference to the liquid density 

a/(Apd]g) =Eo (Eotvos number) 
Apulds/n = Re (Reynolds number) 

and ux/{dsg)m =Fr (Froude number) 

To obtain an explicit functional relationship between mean 
bubble size and particle size, we make a few simplifying 
assumptions. First, the slight bubble size dependence upon 
liquid flow rate exhibited in the data will be ignored. This 
makes it possible to delete the individual Re and Fr numbers 
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Fig. 12 Dimensionless bubble size versus Eotvos number 

from consideration and replace them with the single dimen
sionless group 

A p ^ 3 / y / 2 / M = Re/Fr 

Next, since there was little variation in the density of the par
ticles (the spheres were all of the same density and the pyrex 
cylinders only slightly less dense) and only one fluid was used, 
the term Ap/p,, is nearly constant. It will be thus ignored. This 
leaves only the Eotvos number and the Re/Fr group. 

From a physical point of view, one would expect the term 
involving surface tension, the Eotvos number, to be the most 
important. Furthermore, visual observations of bubbles mov
ing through the bed of cylindrical particle showed that as they 
rose, they often become trapped temporarily beneath a parti
cle or group of particles. During these moments, it is likely 
that the forces on the bubbles are the largest attained during 
the course of a bubble's travels. Thus, it should be at these 
times that a bubble is most likely to break up. Taking the ratio 
of the surface tension generated pressure to the dynamic 
pressure that would exit on such a trapped bubble leads to the 
Eotvos number. 

Now, based upon data from different size spheres, dm/ds is 
plotted versus a/(Ap<^g). The numbers for this plot, Fig. 12, 
are given in Table 4. The straight line is based upon the 2, 3, 
and 5 millimeter diameter particle data, and a least squares 
calculation. Its equation is, 

dm =ds[l.544(a/(Apd2
sg)) +0.143] 

Reference [4] and reference [8] provide the only other bub
ble data available on beds of large particles with relatively low 
gas fluxes. Their data are also summarized in Table 4 and 
plotted in Fig. 12. As can be seen, the correlation is quite 
good. 

The question of a critical particle size for the break up of 
large bubbles can now be considered. If a particle is not 
capable of generating sufficient force to produce a bubble 
whose size is roughly that of the particle, then, according to 
the proposed model, large bubble breakup will not occur. By 
setting dm equal to ds in the correlation, the critical diameter 
can be determined to be 1.89 millimeters for glass particles in 
our system. While this value is consistent with the data, it 
could be argued that reasonably efficient breakup of large 
bubbles requires a particle size somewhat greater than 2 
millimeters. Adding 25 percent to the calculated critical size, a 
value of 2.4 millimeters results. Using this same procedure 
with water properties, a glass particle size of 3.7 millimeters 
should be required for efficient breakup of bubbles. This 
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Table 4 Data for bubble size correlation 

Particles Fluid 

5 mm Spheres 
3 mm Spheres 
2 mm Spheres 
Cylinders 
6 mm Spheres 
6 mm Spheres* 
6 mm Spheres* 
4 mm Spheres* 

Solvents 
Solvents 
Solvents 
Solvents 
Water 
Water 
Octanol 
Octanol 

Sauter mean diameter 

0.1331 

0.144' 
0.181 1 

0.161 
0.24 
0.19 
0.13 
0.13 

Sphere density = 2.49 g m / c m 3 

•Sphere density = 2.45 g m / c m 3 

Cylinder density = 2.24 g m / c m 3 

Solvent mixture propert ies: 

Water properties: 

Octonol properties: 

Density 
Surface tension 

= 0.99 g m / c m 3 

= .029 N / m 

d„,/ds 

0.266 
0.480 
0.905 
0.4812 

0.400 
0.317 
0.217 
0.325 

a/(Apd2
sg) 

0.0789 
0.219 
0.493 
0.211 
0.132 
0.137 
0.0700 
0.157 

Density = 1.00 g m / c m 3 

Surface tension = .07 N / m 

Density = 0 . 8 3 g m / c m 3 

Surface tension = .04 N / m 

'Based upon data at gas fluxes below 0.5 c m / s and bed expansions greater than 20 
percent. 
5Based upon a volume equivalent diameter of 0.335 cm. 

value for water is in very good agreement with literature values 
summarized by Vasalos et al. [12]. From this reference, it ap
pears the critical particle size in water (assuming a solid densi
ty of 2.5 gm/cm) is between 3 and 4 millimeters. 

5 Conclusions 

The light beam method is shown to be a very good means of 
obtaining size information on small bubbles at void fractions 
up to about 1 percent. In a three-phase fluidized bed of 
nitrogen, organic solvent, and glass particles, the experimental 
data show that the mean equilibrium bubble size is nearly in
dependent of liquid and gas flow and dependent primarily on 
particle size. In addition, it was shown that the average bubble 
size could be correlated very well with particle and fluid 
properties via the Eotvos number. 
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On the Drag Coefficient and the Correct Integration of 
the Equation of Motion of Particles in Gases 

E. E. Michaelides1 

Nomenclature 
Cn 
d 

Re 
Re, 

t* 
t+ 

U 

u, 
us x+ 

A* 
Pf 
PP 

= drag coefficient 
= particle diameter 
= Reynolds number 
= particle Reynolds number 
= particle relaxation time 
= dimensionless time 
= gas velocity 
= particle velocity 
= dimensionless particle velocity 
= dimensionless distance 
= gas viscosity 
= gas density 
= particle density 

Introduction 
A great deal of work has been accomplished in the area of 

air particle flows during the last decade. The application of 
numerical techniques in fluid flows resulted in high activity on 
the subject of computational fluid mechanics with particles. 
Among the models developed for the treatment of particle 
flows in air is the Particle-Source-In Cell (PSI-CELL) model 
first introduced by Crowe and his coworkers [1], The tech
niques of this model were subsequently used by others, in
cluding the works in the references [2-6]. In order to make the 
numerical calculations easier all the above use an integrated 
form of the equation of motion for the particles. The particle 
drag coefficient is the main input to this equation and is ob
tained by an empirical relation [7, 8]. The choice of this em
pirical coefficient is paramount to the accuracy of the solution 
of the particle equation of motion. 

This short note aims at pointing out how an exact solution 
to the particle equation of motion can be obtained using the 
drag coefficient from [7, 8]. It also shows the discrepancies in 
the obtained results stemming from other approximate solu
tions or from different drag coefficient expressions. 

The Simplified Particle Motion Equation and Its Solution 
It is assumed here that pp/ps^> 1 and therefore, the added 

mass and Basset force terms are neglected. The particle equa-

Department of Mechanical Engineering, University of Delaware, Newark, 
Del. 19716. 

Contributed by the Fluids Engineering Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS. Manuscript received by the Fluids Engineer Division 
September 8, 1987. 

tion of motion will be solved for horizontal motion and for 
constant fluid velocity, U. Under these conditions, the equa
tion of motion for the particle is: 

^ - - ^ ( 1 - ^ ) (1) 
dV 

where 

24 

t/+ = UJU, (la) 

dPf\U-U,\ dpfU, 
R e „ = - ^ s— = -^J— l l - c / / | = R e l l - ( 7 s

+ I. (16) 

and 

t+^T- pd2 

18/x 

(lc) 

The drag coefficient term cD is given by an empirical rela
tion, such as Stokes Law (cD = 24/Re^) or a modification of it 
(cD=24 (1+0.15 Rep°-687)/Rep) which was proposed in [8] 
and used in [1-6] or by another expression, such as Allen's 
(cD = 30Re/0-625), [9]. It must be pointed out that this list of 
expressions is by no means exhaustive. Other expressions for 
cD are abundant in the literature. 

Substitution of these expressions in (1) yields the following 
three expressions: 

From Stokes Law: 

dui 
dt + -=\-u: 

From the modified Stokes Law, [8]: 

dt' 
-= (1 - [ / / ) [ ! +0.15Re0687 II - Us

+ I0 6 8 7], 

and from Allen's expression: 

dUl 
dt+ 

• = ( l -£ / / )Re° - 3 7 5 l l - C / + I c 

(2a) 

(2b) 

(2c) 

The initial condition for the above equations is determined 
by the particular problem to be solved. It is assumed here for 
simplicity that the particle started from rest (Us

+ (0) = 0). Then 
the integration of the three equations (2a), (2b), and (2c) 
yields: 

£/+ = !• 

Us
+ = 1 - [ (1 +0.15Re°-687)eQ-6! -O.lSRe0'687]1 

and 

u: l-[0.469Re°-3 7 5r +1] 0.375 

(3a) 

(3b) 

(3c) 
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Equation (3b) is the exact and correct solution to the equa
tion (2b), where the modified Stokes Law is taken for the drag 
coefficient. It is different than the expression used in 
references [1-6], which is: 

- /A, + 

with 

t/,+ = l - ( l - £ / J , ) e -

/ = 1+0.15 R e / 

(4) 

and C/JO + is the solids velocity at the end of the previous time 
interval. 

The difference is due to the assumption that the term in 
square brackets in equation (2b) is constant over the interval 
A/+ . This term is not constant, since it contains the solids 
velocity Us

+ , which is the dependent variable in the differen
tial equation. 

At the two limits t+ = 0 and t+ = oo all the above equations 
give identical results for the velocity Us

+ , namely Us
+ = 0 and 

Us
+ = 1. Between those two values for t+ , however, there is 

considerable disagreement among the expressions. This 
disagreement depends on the actual value of t+ and the 
parameter Re. The results of equation (4) are always higher 
than the results of equation (3b), because using constant / i s 

tantamount to assuming higher drag coefficient throughout 
the particle motion. 

One way to minimize the velocity discrepancy is to realize 
that the term in square brackets in equation (2b) is not con
stant and hence to use an updated expression for/after every 
time step At+. It appears that this updating was used in the 
original derivation of equation [1] for obtaining particle 
velocities. However, others (e.g., [5]) have not updated the 
values for the parameter/. The resulting error in the first case 
depends on the time step At + used for the numerical calcula
tions, because this determines how often/is updated. Figure 1 
shows the absolute fractional differences of equation (4) and 
(3c) from equation (3b) as a function of /+ and for Re = 500. 
Two values have been used for At+ , 0.02?+ , and 0.\t+ . It is 
observed that Allen's expression results to a maximum error 
of 11 percent in estimating the particle velocity at /+ =0.1 . 
Equation (4) when not updated results in high fractional dif
ference, but when updated to take into account the variation 
of/, this error is smaller. The results of the solution when/ is 
updated approach those of equation (3b) when At+ tends to 
zero. Actually when At+ =0.02t+ almost all of the fractional 
differences are less than 5 percent. The definition of the ab
solute fractional differences for Fig. 1 are as follows: 

0.20 0.40 0.60 0.B0 
0.20 0.40 0.B0 0.B0 

0.00 i.fio 

Fig-
Ob): 

0 

0.20 0.40 0.B0 0.80 
dimensionless time, t+ 

1 Fractional differences of the various expressions from equation 

from equation (4) without updating f; 

from equation (4) with / updated, and At = 0.1t + 

from equation (4) with 1 updated, and At+ =0.02(+ ; 

from Allen's expression, equation (3c). 

'0.00 0.20 0.40 0.B0 0.80 
dimensionless time, t+ 

Fig. 2 Dimensionless distances traveled by the particle. 

A using equation (3b) 

a using equation (4) with A t + = 0.02J+ ; 

o using equation 4 with A f + =0.1t + ; 

Q using equation 4 without updating f; 

0 using equation 3c. 

1.TJ0 
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ic/?i-t/Jf
+i 

u.. (5) 

where U& is the value from expression (3 b) and [/+• is the 
value from (4) or (3c) at the same /+ and Re. It must be 
pointed out that these differences depend on Re and that they 
become smaller when Re is less than 500. When R e < l these 
differences are always less than 2 percent. 

It must be pointed out that upon integration equations (3a) 
and (3c) yield simple algebraic expressions for the position of 
the particle. Equation (3b) may be integrated by a recursion 
formula to yield a converging series [10]. The results for the 
dimensionless position of the particle 

<*-i: Utdt+ (6) 

are depicted in Fig. 2. It is observed that the results from ex
pression (3b) are always lower, but very close to those ob
tained from Allen's expression equation (3c) and equation (4) 
with / updated in intervals of 0.02/+ . Larger errors in x+ 

(about 10 percent eventually) are obtained when / i s not up
dated or when it is updated every Q.\t+ . Again when At+ —0 
the results from expression (4) for x+ are the same as those of 
equation (3 b). 

The above results for the velocity of the particles and the 
distance covered serve to illustrate the importance of using the 
exact expression for the velocity of the particles or the proper 
choice of At+ when an approximate solution is chosen. 

Calculations have shown that if the final error in velocity 
and position at time t+ = 1 and for Re = 500 is to be less than 5 
percent, then in expression (4) the condition for At+ for which 
the parameter/is updated has to be At+ < 0 . 1 / + . The use of 
expression (4) is not recommended to be used in fast varying 
velocity fields because the choice of At+ would impose a very 
low value for the time step in the problem. In contrast, the ex
act equation (3b) may be used at all times. 

3 Conclusions 
The accurate evaluation of the drag coefficient cD for parti

cle motion in fluids plays a very important role in the calcula
tion of the velocity of an accelerating or decelerating particle. 
Similarly the rigorous solution of the equation of motion of a 
particle is paramount for the determination of the particle 
velocity and position as a function of time. This short note 
gives analytical solutions to the particle equation of motion 
for several expressions of cD and points out the differences 
between them. 

References 
1 Crowe, C. T., Sharma, M. P., and Stock, D. E., "The Particle Source in 

Cell (PSI-CELL) Model for Gas Droplet Flows," ASME JOURNAL OF FLUIDS 
ENGINEERING, Vol. 99, No. 2, 1977, pp. 325-332. 

2 Durst, F., Milojevic, D., and Schonung, B., "Eulerian and Lagrangian 
Predictions of Particulate Two-Phase Flows: A Numerical Study," Appl. Math 
Modeling, Vol. 8, 1984, pp. 101-115. 

3 Shahnam, M., and Jurewicz, J. T., "Particle Motion Near the Inlet of a 
Sampling Probe," Gas-Solid Flows-1986, ed. J. T. Jurewicz, 1986, pp. 145-150. 

4 Kallio, G. A., and Stock, D. E., "Turbulent Particle Dispersion: A Com
parison Between Lagrangian and Eulerian Modeling Approaches," Gas-Solid 
Flows-1986, ed. J. T. Jurewicz, 1986, ASME, pp. 23-29. 

5 Ushimoru, K., and Butler, G. W., "Numerical Simulation of Gas-Solid 
Flow in an Electrostatic Precipitator," Gas-Solid Flows, ed. J. T. Jurewicz, 
1984, ASME, pp. 87-96. 

6 Chen, P. P., and Crowe, C. T., "On the Monte-Carlo Method for Model
ing Particle Dispersion in Turbulence," Gas-Solid Flows, ed. J. T. Jurewicz, 
ASME 1984, pp. 37-41. 

7 Wallis, G. B., One Dimensional Two-Phase Flow, McGraw-Hill, New 
York, 1969. 

8 Rowe, P. N., "The Drag Coefficient of a Sphere," Trans. Inst. Chem. 
Engin., Vol. 39, 1961, pp. 175-181. 

9 Govier, G. W., and Aziz, K., The Flow of Complex Mixtures in Pipes, R. 
Krieger Publ., Huntington, 1977 (repr.). 

10 Gradshteyn, I. S., and Ryzhix, I. M., Tables of Integrals Series and Pro
ducts, ed. by A. Jeffrey, Acad. Press, Orlando, 1980. 

CALL FOR PAPERS 
Fluid Measurements and Instrumentation Forum 
1989 ASME Fluids Engineering Division Meeting 

La Jolla, California July 9-12, 1989 

The Coordinating Group on Fluid Measurements invites papers for the fourth session of the Fluid Measurements and In
strumentation Forum, an annual feature at the Spring meeting of the Fluids Engineering Division. 

PURPOSE AND SCOPE 

The purpose of the Forum is to promote discussion and interchange of current information related to state-of-the-art and 
developing techniques applicable to the wide range of problems facing the fluids engineer in obtaining laboratory and field 
measurements. Papers are solicited on work in progress, new instrument designs, and novel applications of old instruments 
and/or techniques. Presentations will be limited to 10 minutes and are to focus on the measurement technique discussed as 
opposed to general exposition of the engineering problem being studied. Visual aids and demonstrations are encouraged. 

SELECTION OF PAPERS 

Any propsective author is requested to send a completed paper not exceeding 3 pages when eventually typed on mats (ap
proximately 3,000 words) and a page of figures to the organizers. The paper will be informally reviewed and edited prior to 
publication in a bound volume that will be available at the Forum. 

SCHEDULE 
Submission of completed paper 15 Dec 1988 
Notification of acceptance and 

distribution of mats 1 Jan 1989 
Camera-ready mats due 15 Mar 1989 

ORGANIZERS 
Dr. Edwin P. Rood 
Fluid Dynamics Program (1132F) 
Office of Naval Research 
800 North Quincy Street 
Arlington VA 22217.-5000 
(202) 696-4305 

Chester J. Blechinger 
Ford Motor Company 
DPTC-C375 
17000 Rotunda 
Dearborn MI 48121-6010 
(313) 845-5992 

Journal of Fluids Engineering SEPTEMBER 1988, Vol. 110/341 

Downloaded 02 Jun 2010 to 171.66.16.92. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



/ 
/ 

/ • - . 

• • • - : i s i f i ' ! - " « : . ' 

\ •. * : - ' •-.-.•? 

I The Trailing Edge of a Pitching Airfoil at 
I High Reduced Frequencies1 

James S. Uhlman, Jr. The authors state that no inviscid 
trailing edge model is appropriate when the reduced frequen
cy, k, exceeds a value of about 2.4 and they attribute this 
phenomenon to a breakdown of the boundary-layer assump
tion of small pressure gradient normal to the shear layer. This 
condition may also be expressed as a violation of the parallel 
flow assumption of boundary-layer theory which may be 
stated as the requirement that the ratio of the boundary-layer 
thickness, 5, to the radius of curvature of the trailing edge 
streamline, R, must remain small, i.e., 

5 

~R~ 
< < 1 . 

However, if, due to an increase in the reduced frequency, the 
radius of curvature of the trailing edge streamline has become 
small enough to violate this condition then it appears that a 
decrease in the boundary-layer thickness (at constant reduced 
frequency) could result in the subsequent resatisfaction of the 
condition. 

This parallel flow condition may be restated in terms of the 
important dimensionless variables of the problem, namely the 
reduced frequency, 

k = -
u>L 

U„ 

and the Reynolds number, 

UaL 
Re = -

It is well known that, in the laminar regime, the boundary-
layer thickness is related to the Reynolds number by 

5ocRe-1/2. 

In order to obtain a relation between the radius of curvature 
of the trailing edge streamline and the reduced frequency it 
will be assumed that the Euler equations in local cylindrical 
coordinates may be used [1] i.e., 

du du 1 dp 
- + u • 

ds 

and 

dv 

R 

ds 

- 1 dp 

p dn 

where 5 and u are the coordinate and velocity along the 
streamline, n and v are the coordinate and velocity normal to 

By D. R. Poling and D. P. Telionis, published in the December 1987 issue of 
the JOURNAL OF FLUIDS ENGINEERING, Vol. 109. 

Manager, Theoretical Hydrodynamics, Gould Inc./Ocean Systems Division, 
Middletown, R.I. 02840. 

the streamline and p is the pressure. If it is assumed that the 
pressure gradient normal to trailing edge streamline is small, 
which follows from the standard boundary-layer assumption 
or from the experimental data for the case of low reduced fre
quencies, then 

u2 

R = -
dv/dt 

Now if it is assumed that the velocity normal to the streamline, 
v, is sinusoidal and that the velocity along the streamline, u, is 
just a perturbation away from the freestream value then it is 
evident that 

Rock'1 

Therefore the parallel flow assumption becomes 

6 _ k 

~R~ 
- = C-

Re1 < < 1 

where the parameter, C, is independent of k. Based on this ex
pression it appears that a quadrupling of the Reynolds number 
should result in a doubling of the reduced frequency which is 
attainable before the inviscid flow models are no longer ap
plicable. Does the data of the authors support this hypothesis 
and do the authors plan any higher Reynolds number ex
periments in order to examine the effect of Reynolds number? 

Additional Reference 

1 Li, W. H., and S. H. Lam, Principles of Fluid Mechanics, Addison-Wesley 
Inc., Reading, Mass., 1964. 

S. A. Kinnas.3 First, I would like to congratulate the 
authors for such a fine piece of work. It is very useful for the 
hydronamicist to know how physical or nonphysical his 
assumptions are. Especially, for either steady or unsteady 
flows around hydrofoils it is well known that the Kutta condi
tion is very important for the prediction of the pressure 
distributions and therefore forces and moments on the foil. 

The authors present experimental evidence in support of the 
Giesing - Maskell condition at the trailing edge. They also give 
the range of the validity of that condition. They finally suggest 
a new similarity parameter rather than the commonly used 
reduced frequency in order to represent the local trailing edge 
flow. I read their work with great interest and I would like to 
make the following points: 

1) How important is the geometry of the trailing edge? For 
example do the authors expect the same range of validity for 
the Giesing-Maskell condition for different sharp trialing edge 
angles? It is my intuition that the range of validity should be 
affected. 

Research Engineer, Department of Ocean Engineering, M.I.T., 
Mass. 02139. 

Cambridge, 
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2) How does the steady loading and hence the steady value 
of circulation affect their conclusions? 

3) Is there a similar investigation available for a hydrofoil 
subject to an incoming gust? In other words, are there any ex
perimental results of the same sort as described in reference 
[2], but for a broader reduced frequency range? If yes, is the 
range of their parameter I the same as for the pitching 
hydrofoil? 

4) Is there any experimental evidence of the quasi-steady 
Kutta condition for low values of the reduced frequency? In 
other words have the authors observed if the wake indeed 
detaches from the trailing edge along the bisector line? This 
probably would not be important for the pressure distribu
tions as shown in reference 6, but it would be nice to know. 

Finally, I would like to encourage the authors in continuing 
working in this important field. I would like also to ask them 
to keep me updated on their work. We, at MIT, are working 
currently in developing an unsteady propeller panel code and 
we are very interested in their conclusions with regard to the 
unsteady Kutta condition. 

Authors' Closure 

Response of Authors to Comments of J. S. Ulmann 

The discusser's argument is certainly valid. After all, the 
ultimate control of circulation rests upon viscosity. And it is at 
the trailing edge that for attached flow, viscosity influences 
the entire flow field. So indeed we anticipate that the range of 
the validity of the Giesing-Marskell condition should be a 
function of the Reynolds number. Unfortunately our ex
perimental results are limited to Reynolds numbers of the 
order of 104. 

Response of Authors to Comments of S. A. Kinnas 

We feel that the geometry of the trailing edge should not af
fect the validity of the Giesing-Maskell condition. This condi
tion is based on strong physical ground as discussed in detail in 
the references of the paper. The experimental results presented 
here verify the validity of the condition up to / = 0.32. This 
parameter is defined on page 413 of the paper. We also feel 
that the radius of curvature as well should not affect the con
dition, as long of course as it is small. 

We have run some experiments for an airfoil at a fixed angle 
of attack but immersed in a wavy stream, namely a stream 
with a nearly sinusoidal gust (see reference [2] in the paper). 
This is the case of finite steady or rather time-averaged 
loading. Once again it was determined that the Giesing-
Maskell condition is satisfied. However, these data were con
fined to a narrower range of reduced frequencies. 

There is ample pressure data supporting the classical Kutta 
condition for low reduced frequencies as referenced in our 
paper. To our knowledge though, no flow visualization is 
available for this case, and therefore there is no hard evidence 
that for steady or low-frequency oscillatory flow, the stagna
tion streamline bisects the trailing-edge angle. 

It may be appropriate here to note that our Fig. 12 is 
perhaps the most interesting piece of flow visualization but in 
the final version of the paper, was reproduced very poorly. 
This is perhaps because it is a color print. We would be happy 
to share the original of our prints with anyone who expresses 
interest. 

I Erosion Due to Impingement of Cavitating 
I Jet1 

R. Balachandar.2 Professors Yamaguchi and Shimizu are to 
be congratulated for this stimulating paper. The authors have 
presented a large quantity of experimental data from 
systematic tests. However, there are a few points which need 
further discussion. 

(1) A rather interesting observation can be made from Fig. 
17.3 One notes that as L (distance between outlet edge of noz
zle and specimen) increases, the weight loss increases. A max
imum weight loss occurs at a critical value of L for a given set 
of inlet and outlet pressures. However, with a further increase 
in L, the weight loss decreases. This can possibly be explained 
as follows: 

As L is increased, the time available for the bubbles to grow 
increases and larger bubbles impinge on the specimen surface 
rather explosively leading to increased damage. Beyond the 
critical value of L, though the time available for the bubbles to 
grow is large, the local pressures also drop and the bubbles im
pinge less explosively. This leads to reduced erosion. It would 
be interesting to realize why the weight loss values exhibit a 
peak for L< 15 as in Fig. 8. Further, one notes from Fig. 12, 
that as Pd is gradually reduced, the weight loss increases and 
at a critical Pd the weight loss is maximum. A further decrease 
in Pd results in decreased damage. This observation is consis
tent with the behavior found from weight loss measurements 
conducted in cavitating venturi tunnels and rotating' disk ap
paratus behind two-dimensional bluff bodies (21-23 j . As one 
reduces the cavitation number of the flow, the zone enveloped 
by the bubbles will increase. This is somewhat similar to an in
crease in the length of cavity behind two-dimensional bluff 
bodies with a decrease in cavitation number. The bubble size 
will be larger and hence possess more damage potential. 
However, the other effect of reducing the cavitation number 
by reducing the pressure is to reduce the collapse pressure of 
the bubbles and therefore their ability to impact material 
damage is limited. 

(2) It would be interesting to reanalyze the data by arrang
ing the results in a suitable nondimensional form so as to 
eliminate size scale effects. 

Additional References 
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fects on Cavitation Noise and Damage," ASME JOURNAL or FLUIDS ENGINEER
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22 Ramamurthy, A. S., and Bhaskaran, P., "Velocity Exponents for Cavita
tion Noise and Damage," ASME JOURNAL OF FLUIDS ENGINEERING, Vol. 101, 
No. 3, 1979, pp. 69-75. 
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London, 1988. 

Authors' Closure 

The authors would like to express their gratitude to Dr. 
Balachandar for his discussion to the paper. 

The mass loss had generally has two peaks as pointed out in 
the paper. For convenience the peak near the jet exit and other 
are designated the first peak and the second peak, respectively. 
The relationship between the mass loss and the stand-off 
distance depends on the configuration of the test cell as shown 
in Fig. 10. Recent experiments [24] show that it also depends 
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on the test liquid. The experiments in hydraulic oil conducted 
by using apparatus 2 with nozzle holder A show that the mass 
loss has only one peak and the stand-off distance to give the 
maximum mass loss corresponds to the second peak of 
HWBF. Dr. Balachandar's explanations on the effects of the 
stand-off distance and Pd seems to be appropriate when the 
stand-off distance is relatively large. However, when the 
stand-off distance is relatively small, the effect of the pressure 
distribution in the impingement region on cavity behavior 
becomes important. Because of this reason, there exists a com
plex relationship between the mass loss and Pd as shown in 
Figs. 11 and 12 for L= 10 mm and 12.5 mm. 

The mechanism of erosion due to impingement of cavitating 
jet has not yet been sufficiently clarified. Further work to 
clarify scale effect is necessary. 

Additional Reference 

24 S. Shimizu, and A. Yamaguchi, Cavitation Erosion in Hydraulic Oil, 
HWCFs, and Tap Water, unpublished. 

Temperature Effects on Single Bubble Col
lapse and Induced Impulsive Pressure1 

F. G. Hammitt.2 Paper deals with the very interesting 
problem of effects of water temperature on vibratory cavita
tion damage, which conventionally maximizes roughly mid-
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the JOURNAL OF FLUIDS ENGINEERING, Vol. 110, pp. 194-199. 
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way between freezing and boiling points of any liquid yet 
tested. 

Present tests were at constant liquid pressure. However, we 
(U-M) and others find approximately the same thing happens 
for constant suppressure pressure (i.e., NPSH) tests rather 
than constant pressure.3 

Paper's new measurements of bubble shapes and impulsive 
wall pressure add very valuable new information to this highly 
complex problem, and should help considerably in its more 
complete understanding. Also the use of Schleiren pictures is 
valuable. 

Authors' Closure 

The authors wish to express their thanks to Professor Ham
mitt for his valuable discussion to our paper. In the present 
paper, we have made an experimental investigation of the 
temperature effects on the single bubble collapse and the in
duced impulsive pressure at constant liquid pressure. Viewing 
that vibratory cavitation damage is closely related with the col
lapse of a bubble cluster, it must be significantly influenced by 
not only the liquid temperature effect but also the suppression 
pressure effect, as you pointed out. The finding that the 
damage rate indicates a maximum for the both effects, sug
gests that number and size of bubbles as well as surrounding 
pressure vary with those effects. We examined here only one 
effect of the liquid temperature. However, we are now plan
ning a systematic investigation of two bubbles in water at 
various temperatures and pressures, which is a basic problem 
of multi-bubble system. 

F. G. Hammit, Cavitation and Multiphase Flow Phenomenon, McGraw-
Hill, 1980. 
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